
Work Package 1, Deliverables 1.1 to 1.3:

Use Cases and Requirements
Industrial Use Cases and Requirements for the Deployment of
Post-Quantum Cryptography

Version 1.1
Project Coordination Fraunhofer Institute for Secure Information Technology
Date August 24, 2020

Authors

• Continental AG:
• David Noack
• Steffen Sanwald
• Marc Stöttinger

• Elektrobit Automotive GmbH:
• Martin Böhner

• Fraunhofer SIT:
• Norman Lahr

• Hochschule RheinMain:
• Thorsten Knoll
• Steffen Reith

• MTG AG:
• Evangelos Karatsiolis

• Ruhr-Universität Bochum:
• Georg Land

• Technische Universität Darmstadt:
• Juliane Krämer
• Marcel Müller

Project Coordination
Dr. Ruben Niederhagen
Fraunhofer Institute for Secure Information Technology
Advanced Cryptographic Engineering
Rheinstr. 75
D-64295 Darmstadt
Germany

Phone +49 6151 869 135
Mail ruben.niederhagen@sit.fraunhofer.de

mailto:ruben.niederhagen@sit.fraunhofer.de

Contents

1 Introduction 5
1.1 Motivation for Research on Post Quantum Cryptography 5
1.2 Document Structure . 6

2 Terminology 7

3 D1.1 - Definition of Use Cases 9
3.1 Abstraction Model . 9

3.1.1 Simple Sender Receiver Model . 9
3.1.2 Threat Model . 10
3.1.3 Non-Functional Requirements and Properties 11

3.2 Use Cases: Authenticated One-to-Many . 13
3.2.1 Secure Download . 14
3.2.2 Feature Activation . 16
3.2.3 Certificate Revocation List LDAP/HTTP 19

3.3 Use Cases: Encrypted & Authenticated One-to-Many 21
3.3.1 Confidential Configuration . 23
3.3.2 Encrypted Software Update . 25
3.3.3 Flashing via Onboard Diagnosis . 27
3.3.4 Preloading Updates . 30

3.4 Use Cases: Authentication Check with Low Latency 32
3.4.1 Secure Boot . 33
3.4.2 Manipulation Detection . 36

3.5 Use Cases: Challenge Response Authentication 39
3.5.1 Secure Access Control . 41
3.5.2 (Remote) Attestation . 44

3.6 Use Cases: Signature Freshness . 46
3.6.1 Secure Time Distribution . 48
3.6.2 Status Request OCSP . 50
3.6.3 Vehicle-to-Vehicle Communication 52
3.6.4 Sensor Data Transmission . 55

3.7 Use Cases: Key Pair Generation . 58
3.7.1 Key Generation on Device . 59
3.7.2 Key Generation with PKI and Deployed on Device 61

3.8 Use Cases: Secure Channel Establishment 63
3.8.1 Session-based Secure Channel . 65
3.8.2 Password-authenticated Key Establishment 67

3.9 Use Cases: Distributed Data Access . 69
3.9.1 Delegated Access Control . 71
3.9.2 Secure Logging . 71

Use Cases and Requirements
Contents 3

4 D1.2 - Requirements on Post Quantum Schemes 73
4.1 Efficiency and Resources Footprint . 73
4.2 Resilience . 80
4.3 Ease of Implementation . 80
4.4 Physical Attacks . 81
4.5 Additional Remarks . 81

5 D1.3 - Requirements on Hardware Platforms 83
5.1 Consideration Aspects . 83
5.2 Hardware Crypto(graphic) Agility . 83
5.3 Hardware Platforms . 85

5.3.1 Microcontroller Units (MCU) and Central Processing Units (CPU) 85
5.3.2 Some Architectural Considerations 86
5.3.3 Field Programmable Gate Arrays (FPGA) 86

5.4 Softcores on FPGAs . 87
5.5 Connectivity . 88
5.6 Hardware Description Languages (HDL) . 89
5.7 Electronic Design Automation Tools . 89
5.8 Preliminary Conclusion on Hardware Selection 91

Bibliography 93

4 Use Cases and Requirements
Contents

1 Introduction

1.1 Motivation for Research on Post Quantum Cryptography

Research in the development of powerful quantum computers has made enormous
progress in recent years. Figure 1.1 depicts the estimated advancing in the develop-
ment of quantum computers with the expectation that in 2035 large-scale universal
quantum-computer exists. In combination with the existence of efficient algorithms
for factorization and solving the discrete logarithm, i.e., Shor’s algorithm [Sho97],
widespread asymmetric cryptographic schemes are currently considered to be broken
soon. Hence, signature schemes like ECDSA and DSA or key exchange algorithms like
DH are not considered state-of-the-art and safe to use then, because these schemes are
based on asymmetric cryptosystems like ECC or RSA. All of them are vulnerable from a
cryptoanalytic perspective then.

Less affected by the existence of large scale universal quantum computers are sym-
metric cryptographic schemes like ciphers or message authentication schemes. Indeed,
Grover’s algorithm [Gro96] is an efficient search algorithm that can be executed on
quantum computers, but its effect on reducing the search space for symmetric cryptog-
raphy schemes is less severe. In general, the security of symmetric schemes is halved
if an attacker can run an attack using Grover’s algorithm on a large scale universal
quantum computer. A straightforward countermeasure to this threat is to double the
key length of the symmetric schemes to achieve the original intended classical security
level. For instance, schemes using AES-128 today should switch to AES-256 to ensure
the same resistance to cryptoanalytic attacks in the future as they have today.

This future threat scenario puts one cornerstone, the cryptographic algorithms, of IT
security at risk and threatens them to become unusable in the mid to long term. Future
products, systems, and infrastructure rely on IT security. Hence embedded systems are
affected too. Due to the digitalization of products and services in almost all areas, the
connectivity of the components used is increasing. Therefore, the need for advanced
cyber security techniques to protect them is high. Especially real-time systems with
high connectivity like automotive vehicles utilize cryptographic algorithms to protect
them against cyber attacks on asymmetric cryptographic schemes.

Atomic
Quantum
Clock

Quantum
Sensor

Intercity
Quantum

Link

Quantum
Simulator

Quantum
Internet

Universal
Quantum
Computer

2015 2035

Figure 1.1: Predicted steps towards a universal quantum computer (inspired by
[Pre16]).

Use Cases and Requirements
Introduction 5

The National Institute of Standards and Technology (NIST) already started a stan-
dardization contest to identify successor algorithms to replace the standardized crypto-
graphic algorithms of RSA and ECC in 2016. However, due to the nature and properties
of the families of the novel proposed cryptographic algorithms, there is no single succes-
sor algorithm for signature schemes, encryption, and key-exchange to replace RSA or
ECC. Up to now, the NIST plans to standardize one algorithm of each of the five existing
families. Each family has its advantages and disadvantages due to its properties, and
thus not every algorithm might be applicable for every use case. Therefore, the use of
case-based evolution is necessary for the right proposal of post-quantum cryptographic
scheme and parameter selection of the algorithm.

1.2 Document Structure

This document manifests the first three deliverables of the work package WP1:

• D1.1 - Definition of Use Cases

• D1.2 - Requirements on Post-Quantum Cryptographic Schemes

• D1.3 - Requirements on Hardware Platforms

Each delivery is documented in Chapter 3, Chapter 4, and Chapter 5. Due to the
dependencies of these three deliverables, we decided to put them into one report to pro-
vide a better overview on the content of the deliverables and present the dependencies
among them clearly.

Chapter 2 lists an overview of frequently used abbreviations and terms in the docu-
ment that are crucial to foster a common understanding of the content of this report.

Chapter 3 provides a collection of use cases and a proposal for a systematical way to
present their potential, risks, and chances. Because the threats are common to various
branches of industry, special care has been taken that the use cases are selected and
presented in an agnostic manner, i.e., not only the interests of the automotive industry
are taken into account. Further, so called cluster use cases are defined to group use
cases with identical security and model requirements.

Chapter 4 details the different selection criteria on the post-quantum cryptographic
schemes. It is obvious that a systematic enumeration of relevant use cases and analysis
of those use cases enable the derivation of requirements and selection criteria for
post-quantum cryptographic schemes. In addition, the requirements based on the
selected use cases also influence the parameter selection of the different post-quantum
cryptographic algorithms. At this early stage, of course, the selection criteria can only
be very roughly captured and will need to be adapted over time. Thus, a refinement of
the selection criteria will have a strong influence on the use cases presented here (and
vice versa).

Chapter 5 discusses the required hardware platforms and specifications that are
considered for the execution of such post-quantum cryptographic schemes. Not only
performance requirements on the hardware platforms will be discussed, but also
architectural aspects as well as basic hardware components to accelerate the execution
of post-quantum cryptographic schemes in general.

6 Use Cases and Requirements
Introduction

2 Terminology

This section provides an overview of abbreviations and terms used in this document.

Abbreviation Name Explanation
CA Certification

Authority
An entity in a PKI that issues digital certificates.

CAN Controller Area
Network

CAN is a serial bus system used in the automotive
and automation domain. The bus data is trans-
mitted with a differential signal for robustness
reasons.

DMIPS Dhrystone million
instructions per
second

A benchmark to estimate the performance of a
controller.

ECU Electronic Control
Unit

ECU is the general term for an electronic com-
ponent in the in-vehicle network with certain
functions required by the overall architecture of
the vehicle for the correct usage of the vehicle.

HSM Hardware Secu-
rity Module

Additional component offering security services
to the device or system: In the automotive do-
main an HSM is an additional IP core inside a chip
or microcontroller that offers a security enclave
with cryptographic services to the main processor
of the chip or microcontroller.

HTTP Hypertext Trans-
fer Protocol

A communication protocol specifying the mes-
sages between servers and clients. It is specified
in [FR14].

LDAP Lightweight Direc-
tory Access Proto-
col

A communication protocol specifying the com-
munication of clients with directory services. It
is specified in [Ser06].

OBD On-Board Diagno-
sis

The Onboard Diagnosis is a vehicle-specific diag-
nosis system consisting of standardized diagnosis
protocols and interfaces.

OSCP Online Certificate
Status Protocol

A communication protocol used by clients to ask
servers whether one or more certificates are re-
voked. It is specified in [San+13].

PKI Public-key Infras-
tructure

An infrastructure including policies, rules, proto-
cols, and instances in hardware and software for
handling digital certificates and keys.

Use Cases and Requirements
Terminology 7

PQC Post-Quantum
Cryptography

Cryptographic algorithms that are resilient
against attacks exploiting large scale quantum
computers.

TCG Trusted Comput-
ing Group

An industrial standardization body for establish-
ing open standards for the trusting computing
platform.

TPM Trusted Platform
Module

An additional security chip with security features
specified by the TCG to provide security features
to the host system.

Table 2.1: Overview of the terminology used in this report.

8 Use Cases and Requirements
Terminology

3 D1.1 - Definition of Use Cases

This chapter provides a comprehensive overview of use cases that rely on asymmetric
cryptography and thus need post-quantum cryptographic equivalents as motivated
in the introduction. Typically, use cases describe the detailed interaction of a user
with the system to accomplish a specific goal, and the entirety of use cases define the
features to be implemented for that system. The goal of our list of use cases, however,
is not to depict a single and complete system, but to collect a wide range of use cases
that might be realized in separate systems, and to assess the practical relevance of
post-quantum cryptography in industrial applications. For this reason, use cases that
exclusively use symmetric cryptography are omitted. Thus, steps of a use case that
neither concern nor are affected by the use of asymmetric cryptography can be kept
simpler and more generalized. Consequently, different use cases that share similar
mechanics and requirements are combined in cluster use cases.

In the following, we first describe the abstraction model used to make the use cases
comparable and derive the requirements needed for an adequate selection of algorithms
and parameters in Chapter 4.

3.1 Abstraction Model

Due to the strong focus on security and cryptographic application, it makes sense to
use security goals and threats as a frequent basis to describe and compare use cases.
It is not feasible to define a system model that would cover all potential use cases.
The single characteristic common to all use cases is that there are at least two distinct
communication entities within different system environments that are engaged in
communication. Therefore, we introduce a simple abstraction model that represents
the data control flow and data processing based on a simple sender-receiver model
(SRM) for communication. Each use case is evaluated by applying the threat model
to the SRM to derive (or specify) security goals. These security goals, in combination
with the non-functional characteristics for the involved entities, provide the relevant
requirements for algorithm selection.

3.1.1 Simple Sender Receiver Model

The simple sender receiver model (SRM) consists of a sender, a receiver, and a commu-
nication channel between them that is used for data exchange. The relation between
the entities is modeled using the n-m notation, which provides the following relations:
1-1,1-n and n-m. The relevant threats to a given model are depicted in rectangle
brackets [· · ·]. Non-functional requirements for a use case are listed below each entity.
Figure 3.1 visualizes all possible information that could be given for an SRM, but
concrete SRMs differ amongst use cases.

Use Cases and Requirements
D1.1 - Definition of Use Cases 9

Sender: Backend

{g|s/v|mg/mv|e/d}
[SI]

Receiver: ECU

{g|s/v|mg/mv|e/d}

n
Data

m

Figure 3.1: Simple sender receiver model for abstract visualization of all relevant char-
acteristics.

Abbrevation Threat Security Goal
S Spoofing Authenticity
I Information Disclosure Confidentiality

Table 3.1: Threat Model with security goals and corresponding threats.

The curved brackets over the active entity in the model (the receiver and the sender)
indicate the cryptographic operations they perform on the outgoing or incoming data.
Considering signature schemes a signature generation operation is depicted {s} and
a signature verification operation {v}. For message authentication codes (MAC) gen-
eration is represented by {mg} and verification by {mv}. Eventually, {e} stands for
an encryption and accordingly {d} for the decryption operation. Keys generated on
a device as part of the use case are represented with {g}. Next to the name of the
active entities is a label to indicate the corresponding component in the use case. For
instance, Sender: Backend means that the sender in this model is a Backend as practical
comportment represented in the use case.

3.1.2 Threat Model

The threat model used to describe the security goals and the corresponding threats for
each use case in the given sender-receiver model can be derived by considering the
data exchanged as the primary asset to be protected. Hence, as depicted in Table 3.1,
the two relevant security goals are authenticity and confidentiality, and spoofing or
information disclosure are the respective threats.

Authenticity ensures that the sending entity can prove she is whom she claims to be.
Spoofing, the threat towards authenticity, is successful if an attacker can convince the
communication partner to be another identity. Authenticity is usually implemented
using signature schemes. Confidentiality ensures that only the receiving entity, to
which a message was intended for, can read that message. Accordingly, if an attacker
can read the information that should have been confidential, the corresponding threat
information disclosure was realized. Confidentiality is usually implemented using
encryption. Both security goals would be immediately compromised if an attacker
gained access to the corresponding secret keys for either signature generation or
decryption. Hence, integrity is inherently a vital security goal for any key material.
However, since it has no impact on the selected cryptographic algorithms, and we
evaluate use cases at the communication level rather than the system level, we do not
consider it in our threat model. We, therefore, start from the general requirement of
integrity protection of key material. Integrity on the communication level is inherited

10 Use Cases and Requirements
D1.1 - Definition of Use Cases

by authenticity. Furthermore, replay attacks (threat to the security goal of freshness)
can be a threat to particular use cases, but would be mitigated on the protocol level,
have no impact on PQ-resilience and thus are also not considered.

3.1.3 Non-Functional Requirements and Properties

Some aspects of the use cases are essential for the characterization but not reflected
in this abstraction model. These aspects are non-functional requirements as well as
properties of the use case or the involved entities, respectively, that have an impact on
security and execution. All properties are evaluated independently for each participant
of a use case and in the scope that imposes the most limiting or demanding factor. As an
example, in a typical scenario of a backend ministering a large number of client devices,
the single execution of the use case is the limiting scope for each device. In contrast,
the total number of devices and parallel executions of the use case is the limiting scope
for the backend. The potential impact of the properties of our requirements is listed in
Table 3.2.

Use Cases and Requirements
Abstraction Model 11

ID
Re

qu
ire

m
en

ts
Ex

pl
an

at
io
n

D
efi

ne
d
se
to

fc
on

st
ra
in
ts

fo
re

ac
h
re
qu

ire
m
en

t
1

La
te
nc

y
H
ow

m
uc

h
tim

e
do

th
e
cr
yp

to
gr
ap

hi
c
op

er
at
io
ns

ha
ve

fo
re

xe
cu

tin
g
al
ln

ec
es
sa
ry

ta
sk
s
of

th
e
us
e

ca
se
?

hi
gh

(1
hr
s)
,m

ed
iu
m

(f
ew

m
in
ut
es
),

lo
w

(<
5
s)
,

ve
ry

lo
w
(<

1
s)
,v

er
y
ve
ry

lo
w

(<
10

m
s)

2
#

Ex
ec
ut
io
ns

ov
er

pr
od

uc
tl
ife

tim
e

Is
th
er
e
an

up
pe

rl
im

it
fo
rt

he
cr
yp

to
gr
ap

hi
c

op
er
at
io
ns

pe
rf
or
m
ed

w
ith

th
e
sa
m
e
ke

y
pa

ir
du

rin
g
th
e
lif
e
tim

e
of

th
e
en

tit
y?

lim
ite

d,
un

lim
ite

d

3
#

Ke
y
pa

irs
H
ow

m
an

y
di
ffe

re
nt

ke
y
pa

irs
ex

is
ti
n
pa

ra
lle

l
in
de

pe
nd

en
tf
ro
m

da
ta

di
ss
ip
at
io
n?

≤
10

,≤
10

00
,≤

10
0.
00

0,
≤
1.
00

0.
00

0,
>
1.
00

0.
00

0

4
D
at
a
di
ss
ip
at
io
n

W
ha

ti
s
th
e
da

ta
ex

ch
an

ge
or

ac
tiv

ity
sc
en

ar
io

be
tw

ee
n
th
e
se
nd

er
(s
)
an

d
re
ce
iv
er
(s
)?

on
e-
to
-o
ne

,o
ne

-to
-m

an
y,
m
an

y-
to
-o
ne

,
m
an

y-
to
-m

an
y

5
Li
fe

tim
e
of

a
cr
yp

to
gr
ap

hi
c
ar
tif
ac
t

H
ow

lo
ng

sh
al
la

si
gn

at
ur
e
or

a
ci
ph

er
te
xt

co
ns
id
er
ed

to
be

se
cu

re
?

≤
1
ho

ur
,≤

1
da

y,
≤
1
w
ee

k,
≤
1
m
on

th
s,
≤
1
ye

ar
,

≤
5
ye

ar
s,
>
5
ye

ar
s

6
Cu

rr
en

ts
ec
ur
ity

le
ve
l

H
ow

m
an

y
cl
as
sic

se
cu

rit
y
bi
ts

do
es

th
is
us
e
ca
se

re
qu

ire
?

≤
64

bi
ts
,≤

80
bi
ts
,≤

12
8
bi
ts
,≤

19
2
bi
ts
,≤

25
6
bi
ts

7
Si
ze

of
pr
oc

es
se
d

da
ta

H
ow

la
rg
e
is
th
e
pr
oc

es
se
d
in
pu

td
at
a
of

th
e

cr
yp

to
gr
ap

hi
c
op

er
at
io
n?

≤
8
B,
≤
16

B,
≤
32

B,
≤
64

B,
≤
1
KB

,≤
1
M
B,

≤
10

0
M
B,
≤

1
G
B,

>
1
G
B

8
Ph

ys
ic
al

ac
ce
ss
ib
ili
ty

Co
ul
d
an

at
ta
ck
er

ge
tp

hy
sic

al
ac
ce
ss

to
th
e

op
er
at
io
n
en

vi
ro
nm

en
tt
o
pe

rf
or
m

si
de

-c
ha

nn
el

an
al
ys
is
?

re
st
ric

te
d,

ac
ce
ss
ib
le

9
Co

m
pu

ta
tio

na
lp

ow
er

W
ha

ti
s
th
e
co

m
pu

ta
tio

n
po

w
er

of
th
e
en

tit
y?

de
ep

ly
em

be
dd

ed
(≤

25
0
D
M
IP
S)

,e
m
be

dd
ed

(≤
70

0
D
M
IP
S)

,i
nd

us
tr
y
PC

(≤
2.
00

0
D
M
IP
S)

,
IT

(≤
20

.0
00

D
M
IP
S)

,S
er
ve
r(

>
20

.0
00

D
M
IP
S)

10
RA

M
av
ai
la
bi
lit
y

H
ow

m
uc

h
RA

M
is
av
ai
la
bl
e
on

th
e
en

tit
y?

de
ep

ly
em

be
dd

ed
(≤

32
KB

),
em

be
dd

ed
(≤

25
6
KB

),
in
du

st
ry

PC
(≤

1
M
B)

,I
T
(≤

1
G
B)

,S
er
ve
r(

>
1
G
B)

11
St
or
ag

e
av
ai
la
bi
lit
y

H
ow

m
uc

h
no

n-
vo

la
til
e
m
em

or
y
is
av
ai
la
bl
e
on

th
e

en
tit

y?
de

ep
ly

em
be

dd
ed

(≤
2
M
B)

,e
m
be

dd
ed

(≤
4
M
B)

,
in
du

st
ry

PC
(≤

32
M
B)

,I
T
(≤

1
G
B)

,S
er
ve
r(

>
1
G
B)

Ta
bl
e
3.
2:

N
on

-fu
nc

tio
na

lr
eq

ui
re
m
en

ts
of

a
us
e
ca
se

w
ith

a
co

rr
es
po

nd
in
g
se
to

fc
on

st
ra
in
ts
.

12 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.2 Use Cases: Authenticated One-to-Many

This use case cluster regards an authenticated one-to-many relation between one
sender and multiple receivers (cf. Figure 3.2). In all use cases of this section, the
sender (server) is always a powerful resource, either a cloud backend or a certification
authority (CA). In contrast, the properties of the receivers are use case dependent. Data
is transmitted from the sender to the receiver, but not necessarily in parallel or within
certain time bounds. These use cases require any receiver to verify the authenticity of
the transmitted data. Consequently, common preconditions are that the public key of
the sender has been rolled out securely and is tamper-protected at the receiver.

Table 3.3 shows ranges between the worst case and the best case of the requirements
of all sub use cases. In all sub use cases, the sender has the computational properties of
a server and runs in a trusted operation environment. In contrast, the receiver runs in
the untrusted field with varying computation properties between deeply embedded and
regular IT systems. The latency on both sides varies between low and medium. The
number of executions over the product lifetime varies between less than 128 and 1024
executions on the sender and between less than 128 and an unpredictable number on
the receiver side. The lifetime validity of the cryptographic artifacts is rather long and
does not require more frequent updates than one per year.

Exemplary use cases are downloading (updated) software securely to an ECU (Sec-
tion 3.2.1), feature activation, where already installed software on the ECU is enabled
during runtime (Section 3.2.2), and publishing certificate revocation lists securely
(Section 3.2.3).

Sender

{g|s}
[S]

Receiver

{v}

1
Data

n

Figure 3.2: Communication model of the use case authenticated one-to-many.

Properties Sender Receiver
Latency Low : Medium Low : Medium
Executions over product lifetime limited : unlimited limited : unlimited
Size of processed data ≤64B : >1GB ≤64B : >1GB
Physical accessibility restricted accessible
Computational power Server Deep. Embedded : IT
RAM availability Server Deep. Embedded : IT
Storage availability Server Deep. Embedded : IT
Key pairs ≤10
Data dissipation one-to-many
Life time ≤1 year : >5 years
Current security level ≤128 bits : ≤256 bits

Table 3.3: Requirement ranges of the use cases authenticated one-to-may.

Use Cases and Requirements
Use Cases: Authenticated One-to-Many 13

3.2.1 Secure Download

The secure download mechanism enforces that only authenticated software is flashed
to an ECU. Asymmetric signatures prevent that an attacker can flash manipulated
software to an ECU. The signature is deployed, along with the software, to be flashed.
Therefore, it is signed with a private key in a trusted environment (e.g., the backend).
The corresponding public key used for the verification must be enrolled in the ECU and
stored tamper-protected in secure storage.

For flashing software, the ECU usually boots into a dedicated bootloader. There,
it receives the software from a defined source (e.g., the communication unit or the
onboard diagnosis interface) and downloads the software to the memory of the ECU
and adjusts the boot flags. The secure software download mechanism is part of the
bootloader and performs a signature verification before flashing the software. Only if
the signature verification succeeds, the bootloader flashes the software [WS09].

Threat Model

The transmitted data contains the code and configuration data of the ECU and must
only be accepted if coming from an authenticated backend. The according SRM is
shown in Figure 3.3, where the backend generates the signature, and the ECUs are
verifying it, thus ensuring authenticity.

Properties and Requirements

For this use case, the properties and requirements are derived for implementing secure
software download in the automotive domain on an ECU and shown in Table 3.4.

Sender: Backend

{g|s}
[S]

Receiver: ECU

[T]{v}

1
Data

n

Figure 3.3: Communication model of the use case secure software download.

14 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties Backend ECU
Latency Medium Low
Executions over product lifetime limited limited
Size of processed data ≤1MB: >1GB ≤1MB: >1GB
Physical accessibility restricted accessible
Computational power Server Deeply embedded
RAM availability Server Deeply embedded
Storage availability Server Deeply embedded
Key pairs ≤10 ≤10
Data dissipation one-to-many
Life time >5 years
Current security level ≤192 bits : ≤256 bits

Table 3.4: Requirements of the use case secure software download.

Backend

Backend

ECU

ECU

sign software update

Signed software update

verify signed software update

Update valid/invalid response

Figure 3.4: Sequence diagram of the secure software download use case.

Use Cases and Requirements
Use Cases: Authenticated One-to-Many 15

3.2.2 Feature Activation

With increasing connectivity and digitalization of vehicles, functionality is increasingly
controlled by software and as a consequence can also be controlled remotely. This
enables new business models, such as pay-on-demand services for different functional
features of a device. For example, a manufacturer of sports cars could offer to enable
additional power in 30-minute packets. In general, the features that can be requested on
demand are realized in software and the corresponding software section gets activated
or deactivated by request from the backend. Usually, the initially deployed software of
a device/ECU already contains all functionalities, but only a certain set is activated due
to a policy set.

When the user buys or rents a feature on demand, and after a feature activation
acknowledgement from the backend, the policy setting in the ECU gets updated via a
specific message. This message can be transmitted to the ECU via a physical connection
or via a remote connection. The most common approach is that the policy change is
realized by a certificate that is signed by a backend entity. In this setup, the number of
signatures generated by a dedicated private public key pair is finite and predictable
over the life time of the vehicle. The certificate shall contain some sort of time stamp
to enable the check for freshness. In the case of a time-limited feature activation, the
feature shall be deactivated after a certain period of time, which either requires a secure
source of time or a tamper-resistant timer in the vehicle, or the explicit deactivation by
another message from the backend after the elapsed time.

In addition, the activation of features does not need a one-to-one activation and in
certain scenarios the feature activation might be broadcast to many identical devices.
One example for this case was the range extension feature Tesla activated when hurri-
cane Irma hit Florida. Tesla extended the range of all Tesla models in the Florida region
for a certain period of time to support the evacuation, [Lip17]. Figure 3.6 depicts the
process steps of performing an activation of an additional feature of a device that is
already deployed into field operation.

Threat Model

Mapped to the sender-receiver model visualized in Figure 3.5, the sender represents
the backend, the ECU is the receiver and is required to verify the authenticity of the
activation message to mitigate spoofing, which in this case would typically be financially
motivated.

Properties and Requirements

Table 3.5 depicts the non-security related requirements for implementing the use case.
For this use case, the properties and requirements are derived for implementing feature
activation in the automotive domain on an ECU.

16 Use Cases and Requirements
D1.1 - Definition of Use Cases

Sender: Backend

{g|s}
[S]

Receiver: ECU

{v}

1
Data

n

Figure 3.5: Communication model of the use case feature activation.

Properties Backend ECU
Latency Low Low
Executions over product lifetime unlimited unlimited
Size of processed data ≤1MB ≤1MB
Physical accessibility restricted accessible
Computational power Server Embedded
RAM availability Server Embedded
Storage availability Server Embedded
Key Pairs ≤10 ≤10
Data dissipation one-to-many
Life time <1 year
Current security level ≤128 bits

Table 3.5: Requirements of the use case feature activation.

Use Cases and Requirements
Use Cases: Authenticated One-to-Many 17

Backend

Backend

Device

Device

Activation request

Validate request

sign activation policy

Activation policy

verify policy

update settings/policy

Figure 3.6: Sequence diagram of the use case feature activation.

18 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.2.3 Certificate Revocation List LDAP/HTTP

In this use case, the participants of a PKI download a certificate revocation list (CRL)
from an LDAP or HTTP server. A CRL is a list signed by the CA that contains certificates
that are revoked. Before using a certificate, the users check whether this certificate is
included in the CRL or not. If it is included, it is revoked and deemed invalid by the
users.

Threat Model

Even though communication is triggered by an end-entity requesting the list from
the server, we consider the CA to be the sender, since it signs the CRL, as shown in
Figure 3.7. The LDAP/HTTP Server is considered as part of the communication channel.
The threat to this use case is an attacker managing to provide a manipulated CRL,
excluding certificates that have been revoked, thereby spoofing the CA.

Properties and Requirements

Table 3.6 depicts the non-security related requirements for implementing the use case.

Sender: CA

{g|s}
[S]

Receiver: End-Entity

{v}

1
Data

n

Figure 3.7: Communication model of the use case feature activation.

Properties CA End-Entity
Latency Medium Medium
Executions over product lifetime unlimited unlimited
Size of processed data ≤1MB ≤1MB
Phyisical accessibility restricted accessible
Computational power Server IT
RAM availability Server IT
Storage availability Server IT
Key pairs ≤10 ≤10
Data dissipation one-to-many
Life time >5 years
Current security level ≤128 bits

Table 3.6: Requirements of the use case certificate revocation list LDAP/HTTP.

Use Cases and Requirements
Use Cases: Authenticated One-to-Many 19

CA

CA

LDAP/HTTP Server

LDAP/HTTP Server

EE

EE

sign CRL

Publish CRL

Fetch CRL

verify CRL

Figure 3.8: Sequence diagram of the use case certificate revocation list LDAP/HTTP.

20 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.3 Use Cases: Encrypted & Authenticated One-to-Many

In addition to the previous cluster, the following use cases also require confidentiality
of message exchange in a one-to-many relation between sender and receivers (cf. Fig-
ure 3.9). In all use cases of this section, the sender is always a powerful server. In
contrast, the properties of the receivers are use case dependent. Data is transmitted
only from the sender to the receiver and is always encrypted in addition to being signed.
The receivers shall be able to verify the origin and integrity of the transmitted data,
which is realized by an asymmetric cryptographic signature. The sender generates the
signature over the payload data using its private key and sends the data along with the
signature to the receivers. On reception of the message, the receivers can verify the
signature using the corresponding public key.

As the use cases all describe encrypted data, a symmetric key needs also to be
produced in general. In the case of a server encrypting data for later use, this key
is generated on the server. In cases where a secure channel is to be opened, a key
exchange algorithm needs to be used.

Table 3.7 compares the worst case and the best case of the requirements of all sub
use cases. In all sub use cases, the sender has the computational properties of a server
and runs in a trusted operation environment. In contrast, the receiver runs in the
untrusted field with varying computational properties between deeply embedded and
standard IT systems. The latency on both sides varies between low and medium. The
number of executions over the product’s life time varies between less than 128 and
1024 executions on the sender and between less than 128 and an unpredictable amount
on the receiver side. The lifetime validity of the cryptographic artifacts of the use cases
is less than one year with the exception of the use case in Section 3.3.3.

Exemplary use cases are confidential configuration (Section 3.3.1), encrypted soft-
ware updates (Section 3.3.2), flashing via on-board diagnosis (Section 3.3.3) and
distributing encrypted software to target devices in the field without attaching the
secret for decryption (Section 3.3.4). Whereas sharing the secret to a defined later
time enables us to decouple the distribution from the actual release of the software, for
example, to balance the server load over multiple days/weeks.

Sender

{g|s|e}
[SI]

Receiver

{d|v}

1
Data

n

Figure 3.9: General communication model of encrypted and authenticated one-to-many
use cases.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 21

Properties Sender Receiver
Latency Low: High Low: Medium
Executions over product lifetime limited:unlimited limited:unlimited
Size of processed data ≤64B: >1GB ≤64B: >1GB
Physical Accessibility restricted accessible
Computational power Server Deep. Embedded: IT
RAM availability Server Deep. Embedded: IT
Storage availability Server Deep. Embedded: IT
Key pairs >1.000.000 ≤10
Data dissipation one-to-many
Life time ≤1 year
Current security level ≤192 bits : ≤256 bits

Table 3.7: Requirement ranges of the use cases encryption & authenticated one-to-may.

22 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.3.1 Confidential Configuration

Servicing a device containing private information should be done in a way such that the
private data can only be accessed by authorized clients. This confidential configuration
mechanism goes two ways, an attacker should not be able to see which data is accessed
nor the data itself once it is relayed back. The data is usually accessed by way of a
remote server, or a local diagnosis tool. The onboard device would need to be able to
verify that whoever is accessing it is authorized to do so. Such an authorization could
stem from a temporary certificate signed by an authorized authority. The onboard
device would then check whether the certificate is still valid and initiate a transfer
using it as proof. This means that the server/diagnosis tool needs to be able to generate
certificates, and send them to be signed to the correct authority. The authority thus
needs to be able to sign an arbitrary amount of times.

Threat Model

Mapped to the sender-receiver model visualized in Figure 3.10, the sender represents
the device that requests confidential data from the client, which may be a server or
even a deeply embedded device. The communication may pass through multiple hops,
without revealing any information of what had been transmitted. Hence, the security
goals are authenticity and confidentiality for the transmitted data.

Properties and Requirements

The use case is generic over which sender-receiver pair it operates on. Consequently,
direct requirements cannot be formulated. However, the possible range of values is
presented in Table 3.8.

Sender: Backend

{g|s|e}
[SI]

Receiver: Client

{d|v}

1
Data

n

Figure 3.10: Communication model of the use case confidential configuration.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 23

Properties Backend Client
Latency Medium Low
Executions over product lifetime unlimited unlimited
Size of processed data ≤1GB ≤1GB
Physical accessibility accessible accessible
Computational power Server: Embedded Server: Deeply em-

bedded
RAM availability Server: Embedded Server: Deeply em-

bedded
Storage availability Server: Embedded Server: Deeply em-

bedded
Key pairs >1.000.000 ≤10
Data dissipation one-to-one
Life time ≤1 year
Current security level ≤256 bits

Table 3.8: Requirements of the use case confidential configuration.

Server

Server

Client

Client

sign confidential data request

Confidential data request

verify data request

Confidential data

Verify data integrity

Figure 3.11: Sequence diagram of the use case confidential configuration.

24 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.3.2 Encrypted Software Update

Updating software is not always done by the developer of that software. Instead, it may
be distributed to intermediaries who then are tasked to update relevant devices: the
clients. This kind of update helps in cases where a central server would have too high
a load, or when the expected environment of the update does not have the required
connectivity (be it connection at all, or download speed).

Such an update needs to be encrypted at rest, and therefore it differs from a ’simple’
update. The update needs to also be verifiably tamper-proof and authenticated. Hence
the client can verify that the update is indeed valid.

Threat Model

Mapped to the sender-receiver model visualized in Figure 3.12, the sender represents
the server publishing an update. It signs and encrypts it with a key that is accessible to
the client only. The result is then made available for download to intermediaries, who
then store the update until it is no longer required. At a later time, the intermediary
sends the downloaded update to the client device, which then verifies the integrity
and authenticity of the update before applying it. Thus, ensuring the authenticity and
confidentiality of the update.

Properties and Requirements

The use-case is generic over which sender-receiver pair it operates on. Consequently,
direct requirements cannot be formulated. However, the possible range of values is
presented in Table 3.9.

Sender: Server

{g|s|e}
[SI]

Receiver: Client

{d|v}

1
Data

n

Figure 3.12: Communication model of the use case confidential configuration.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 25

Properties Server Client
Latency N/A N/A
Executions over product lifetime limited limited
Size of processed data >1GB >1GB
Physical accessiblity accessible accessible
Computational power Server: Embedded Embedded: Deeply

embedded
RAM availability Server: Embedded Embedded: Deeply

embedded
Storage availability Server: Embedded Embedded: Deeply

embedded
Key pairs >1.000.000 ≤10
Data dissipation one-to-one
Life time ≤1 year
Current security level ≤256 bits

Table 3.9: Requirements of the use case encrypted update.

Server

Server

Client

Client

encrypt update

sign encrypted update

Update

verify update

decrypt update

Apply update

Figure 3.13: Sequence diagram of the use case encrypted update.

26 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.3.3 Flashing via Onboard Diagnosis

Closely related to the secure software download outlined above is the EVITA use case for
(diagnosis) flashing per on-board diagnosis (OBD). The EVITA specification describes
the procedure of flashing new firmware to an ECU as follows: “A car owner takes his car
to the area of a service station. To start the diagnosis session, the car has to be activated.
The ECU initializes its software and starts the diagnosis function, called diagnosis server.
In this state, the diagnosis server is in the default mode (this is defined as a session
in [ISO13]). The service station employee connects his diagnosis tool to the on-board
diagnosis interface in the vehicle. Such a connection is established by plugging a cable
to the diagnosis connector, which is different from car to car. A diagnosis request is
then sent via the Communication Unit CU (on-board diagnosis interface) to the ECU.
The ECU authenticates the diagnosis tool and checks data integrity. If the request is
successful, the ECU opens a programming session. The service station employee begins
his diagnosis by checking the ECU type and firmware version. Assuming the ECU type
is known, a comparison is also made to figure out the need for an update of the version.
The diagnosis tool then sends the encrypted packets of the new firmware to the ECU,
which stores it in the RAM. The new firmware is decrypted at ECU level and flashed
in the ROM packet wise. The date of the update is written in the ECU. Finally, the
programming session is closed by sending an EcuReset request to the ECU.” [Eur09].

Threat Model

This use case description focuses on the firmware enrollment from the diagnostic tool to
the ECU, which requires authenticity to ensure that no malicious firmware updates can
be installed and confidentiality to protect the IP of the firmware. The communication
unit (diagnosis tool) is abstracted as part of the communication channel, as the backend
has to encrypt the update package.

Properties and Requirements

Table 3.10 depicts the non-security related requirements for implementing the use case.
The given categorization is derived for implementing flashing via on-board diagnosis in
the automotive domain on an ECU.

Sender: Backend

{e} [I]

Receiver: ECU

{g|d}

1
Data

1

Figure 3.14: Communication model of the use case flashing via onboard diagnosis.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 27

Properties Server ECU
Latency High Low
Executions over product lifetime limited limited
Size of processed data ≤1MB: ≤1GB ≤1MB: ≤1GB
Physical accessibility restricted accessible
Computational power Industry PC Deeply embedded
RAM availability Industry PC Deeply embedded
Storage availability Industry PC Deeply embedded
Key pairs ≤10 ≤10
Data dissipation one-to-one
Life time ≤5 year
Current security level ≤192 bits

Table 3.10: Requirements of the use case flashing via onboard diagnosis.

28 Use Cases and Requirements
D1.1 - Definition of Use Cases

DiagnosisTool

DiagnosisTool

ECU

ECU

Connection request

Generate challenge

Connection response incl. challenge

Compute response

Response + info request about ECU

verify response

ECU info

Open session

Encrypted firmware update

decrypt firmware

OK Response

Close session

Figure 3.15: Sequence diagram of the flashing via onboard diagnosis use case.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 29

3.3.4 Preloading Updates

Routine updates are often scheduled to be available to all clients at the same time.
However, downloading the update to all clients at the same time can quickly exceed
the available bandwidth. Limitations in download speed or even delaying downloads
for different user groups are detrimental to customer satisfaction. Silently distributing
updates prior to the scheduled time can mitigate these limitations and allow for parallel
activation. To ensure authenticity updates must be signed, while encrypting them with
a symmetric key, ensures that they also cannot be installed or inspected beforehand. For
activation only the decryption key needs to be distributed, which requires significantly
less bandwidth. Signing the decryption key ensures that the key comes from the same
trusted source as the update. As a precondition the relevant root certificates must be
enrolled to the devices to verify and trust the signature. Additonal encryption of the
decryption key is not necessary since confidentiality of the update is only required until
the key is distributed. Figure 3.17 visualizes this workflow.

Threat Model

In terms of the SRM (cf. Figure 3.16), the sender is always a backend distributing the
software update, which needs to be authentic. This is ensured by a dedicated signed
encryption key and a signature on the update itself. Different possible device classes
ranging from server to deeply embedded can occur as a receiver, and depending on
their capabilities, key pairs for encryption must either be generated on the device or
securely flashed in a trusted environment.

Properties and Requirements

The use case is generic over which server-client pair it operates on. Consequently, direct
requirements cannot be formulated. However, the possible range of values is presented
in Table 3.11.

Sender:Server

{g|s|e}
[SI]

Receiver:Client

{g|d|v}

1
Data

n

Figure 3.16: Communication model of the use case confidential configuration.

30 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties Server Client
Latency High Medium
Executions over product lifetime limited limited
Size of processed data ≤1MB: ≤1GB ≤1MB: ≤1GB
Physical accessibility restricted accessible
Computational power Server Server: Deeply em-

bedded
RAM availability Server Server: Deeply em-

bedded
Storage availability Server Server: Deeply em-

bedded
Key pairs > 1.000.000 ≤10
Data dissipation one-to-many
Life time ≤1 year
Current security level ≤192 bits

Table 3.11: Requirements of the use case preloading updates.

Server

Server

Client

Client

generate encryption key

encrypt update

sign update

Encrypted and signed update

verify signature of update

sign encryption key

Signed encryption Key

verify signature of encryption key

decrypt and apply update

Figure 3.17: Sequence diagram of the use case update preloading.

Use Cases and Requirements
Use Cases: Encrypted & Authenticated One-to-Many 31

3.4 Use Cases: Authentication Check with Low Latency

This cluster section consolidates use cases for authentication checks with the constraint
of low latency. In particular, the target is to verify the integrity of firmware/software
images and files of embedded systems to detect manipulations by an attacker. While
Section 3.4.1 verifies the integrity during the boot process, Section 3.4.2 verifies the
integrity during the runtime of the system. As both use cases pursue a similar objective,
both can be implemented with the same symmetric and asymmetric cryptographic
operations. To cover both characteristics in the PQ-resilience, Section 3.4.1 is described
with asymmetric operations and Section 3.4.2 is described with symmetric operations.

Regarding common security goals in the abstracted SRM in Figure 3.18, the sender
always aims to protect the integrity and authenticity of the data, and the receiver
verifies it. Depending on the architecture, the sender can be either on the same system
as the receiver or outside. In the latter case, the authenticity of the data can be used
and verified on multiple systems.

Sender

{g|s|mg}
[S]

Receiver

{g|v|mv}

1
Data

1-n

Figure 3.18: Communication model of the abstract use case of authentication check
with low latency.

Properties Device Device
Latency Very low Very low
Executions over product lifetime unlimited unlimited
Size of processed data <1KB: >1GB <1KB: >1GB
Physical accessibility accessible accessible
Computational power Embedded Embedded
RAM availability Embedded Embedded
Storage availability Embedded Embedded
Key pairs ≤10 ≤10
Data dissipation one-to-one
Life time <1 months
Current security level ≤192 bits

Table 3.12: Requirements of the cluster use case authentication check with low latency.

32 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.4.1 Secure Boot

Secure boot is a mechanism to ensure the software integrity of a device. Before code
instructions are executed, the secure boot mechanism cryptographically verifies the
integrity and authenticity of the code block in memory. The goal is to gain trust in
the integrity of the executed software. Moreover, manipulation of software can be
detected during the boot phase of the ECU to prevent its execution. Modern ECUs can
contain huge software stacks and are often booted in multiple stages for performance
reasons. The secure boot workflow has to verify each boot stage before passing control
to it. The trust anchor is a tamper protected immutable portion of code, which is the
first code executed after ECU reset and has to be trusted. The trust anchor verifies the
first boot stage and, after succeeding, passes control to it. Forming a chain of trust,
where each boot stage trusts its predecessor, each boot stage verifies the integrity of
its successor until the ECU is booted completely [Kan+19]. There are three secure
boot verification schemes: hash-based, MAC-based, and signature-based verification.
Considering the relevance of PQC, this use case solely focuses on signature-based
verification, which relies on asymmetric cryptography. In this verification scheme,
the binary blob containing all executable code instructions and configuration data
is deployed to the target ECUs along with a cryptographic signature over the blob.
The signature is securely generated with a private key in a protected backend and
is often enveloped in a certificate. The corresponding public key is deployed to the
target ECUs during production and stored tamper protected [Kan+19]. During the
boot phase of the ECU, the secure boot workflow comprises of two main operations:
a) computing the hash value over the binary blob in the memory of the ECU and b)
comparing the output hash value against the given hash value of the according signature
in memory and verifying the signature with the public key. If the verification fails,
secure boot shall enforce active countermeasures, e.g., not booting the ECU [Kan+19].
Figure 3.20 depicts the process steps of performing a secure boot on an ECU. By us-
ing signature verification on each boot stage, the secure boot workflow checks the
authenticity and inherently also integrity of the software, starting from the trust anchor.

Besides asymmetric signature verification, the secure boot can be implemented with
symmetric MAC verification, too. This approach is often used to minimize the latency of
the integrity verification. In the symmetric approach, the MAC tags are often generated
and verified on the same machine using a device-specific key[HiS09].

Threat Model

The threat model included in the SRM for the use case secure boot with asymmetric cryp-
tographic algorithms are depicted in Figure 3.19. In the model, the sender represents
the backend, which generates the signature over the binary blob of the ECU code and
configuration using its private key. Thus, the sender has the security goals of integrity,
authenticity, and confidentiality. The transmitted data is the binary blob containing
the code and configuration data of the ECU along with the signature. The data can be
distributed to the ECU in several ways, e.g., secure download, production, OTA, and,
thus, are omitted in Figure 3.20. The data need to be transmitted tamper-protected
and often requires freshness, e.g., it should not be possible to deploy an older version

Use Cases and Requirements
Use Cases: Authentication Check with Low Latency 33

of the ECU firmware. Each receiver represents an ECU that performs the actual secure
boot workflow. The signature verifications of each boot stage lead to the security goal of
integrity. For some scenarios, the signed firmware or software is additionally encrypted
to prevent disclosure of information. In this case, the transmitted data (the firmware or
software) needs to be encrypted by the sender and decrypted by the receiver. Hence,
for this scenario, the receiver has the additional security goal confidentiality to protect
the key for the decryption process, the firmware or software.

Properties and Requirements

Table 3.13 depicts the non-security related requirements for implementing the use case.
For this use case, the properties and requirements are derived for implementing secure
boot in the automotive domain on an ECU. The different parameters for the properties
are defined in Table 3.2. An essential requirement for this use case is latency, as the car
is not operable before the ECU has completely booted. Of course, car manufacturers
try not to strain the patience of their customers excessively here.

Sender: Backend

{g|s}
[S]

Receiver: ECU

{v}

1
Data

n

Figure 3.19: Communication model of the use case secure boot.

Properties Backend ECU
Latency Very low Very low
Executions over product lifetime limited unlimited
Size of processed data ≤1KB: >1GB ≤1KB: >1GB
Physical accessibility restricted accessible
Computational power Server Embedded
RAM availability Server Embedded
Storage availability Server Embedded
Key pairs ≤10 ≤10
Data dissipation one-to-many
Life time >5 years
Current security level ≤192 bits

Table 3.13: Requirements of the use case secure boot.

34 Use Cases and Requirements
D1.1 - Definition of Use Cases

EC
U

EC
U

Tr
us
tA

nc
ho

r

Tr
us
tA

nc
ho

r

BS
1

BS
1

BS
2

BS
2

Re
se
t

Ex
ec
ut
e

ve
ri
fy

si
gn

at
ur
e
of

BS
1
bl
ob

pa
ss

co
nt
ro
l

ve
ri
fy

si
gn

at
ur
e
of

BS
2
bl
ob

pa
ss

co
nt
ro
l

Fi
gu

re
3.
20

:S
eq

ue
nc

e
di
ag

ra
m

of
th
e
se
cu

re
bo

ot
us
e
ca
se
.

Use Cases and Requirements
Use Cases: Authentication Check with Low Latency 35

3.4.2 Manipulation Detection

Manipulation detection extends secure boot to the files of an operating system. This
use case targets the runtime detection of offline manipulation of files in a filesystem.
For each integrity protected file, a metafile is generated, which contains attributes
about the file. One of these attributes is a hash-based message authentication code
(HMAC) of the protected file. Before each read access during runtime, the MAC tag
is computed over the protected file and compared against the reference tag in the
corresponding metafile. If the tag does not match, manipulation can be concluded,
and the read access will be prohibited. At each write access to the protected file at
runtime, the MAC tag is generated newly for the modified file and updated in the
metafile. The symmetric HMAC key is generated locally on the device, is stored in a
secure storage, and only accessible during runtime in a trusted environment. Prominent
open-source examples of the manipulation detection on filesystems are DM-Integrity
and the Extended Verification Module of the Integrity Measurement Architecture (IMA)
of Linux [BPM18; KH17].

Figure 3.22 visualizes an exemplary write and read operation with enabled manipula-
tion detection as a sequence diagram. To facilitate the integration of the manipulation
detection, a virtual driver handles the MAC generation and verification, which is trans-
parent to the application and represented as ‘transparent manipulation detection layer
(TMDL)’. The driver obtains the symmetric key from a trusted environment to generate
and verify the MAC tag and is never available to the application.

Considering the performance and capabilities of embedded systems, this use case
only regards the HMAC based implementation of manipulation detection. The IMA
provides signature-based verification of the file integrity as an alternate option to the
MAC verification. This approach allows signing files outside of the system to prohibit
changes of those within the system [KH17]. Regarding the SRM, this alternate approach
is similar to the SRM representation of secure boot in Section 3.4.1.

Threat Model

Figure 3.21 visualizes the SRM of the use case manipulation detection. The MAC
tags are generated and verified locally on the system, and the key never leaves the
system. Therefore, the sender and the receiver both represent the same device. The
sender represents the process of generating the MAC tag to protect the integrity and
authenticity of the files.

The receiver represents the process of the MAC verification to detect violations of
the integrity of the files. Since both procedures require the secret symmetric key, both
entities derive the property of confidentiality.

Properties and Requirements

Table 3.14 depicts the non-security related requirements for implementing the use
case. For this use case, the properties and requirements are derived for implementing
manipulation detection on an embedded system. The different parameters for the
properties are defined in Table 3.2.

36 Use Cases and Requirements
D1.1 - Definition of Use Cases

Sender: Device

{g|mg}
[S]

Receiver: Device

{g|mv}

1
Data

1

Figure 3.21: Communication model of the use case manipulation detection.

Properties Device Device
Latency Very low Very low
Executions over product lifetime unlimited unlimited
Size of processed data ≤1KB: >1GB ≤1KB: >1GB
Physical accessibility accessible accessible
Computational power Embedded Embedded
RAM availability Embedded Embedded
Storage availability Embedded Embedded
Key pairs ≤10 ≤10
Data dissipation one-to-one
Life time ≤1 months
Current security level ≤192 bits

Table 3.14: Requirements of the use case manipulation detection.

Use Cases and Requirements
Use Cases: Authentication Check with Low Latency 37

Application

Application

TMDL

TMDL

FS

FS

Syscall write file

Write file

generate MAC tag

Write file + tag

Write success

Write success

Syscall read file

Read file

Read file + tag

verify MAC tag

Return file or warning

Figure 3.22: Sequence diagram of the use case manipulation detection.

38 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.5 Use Cases: Challenge Response Authentication

This use case cluster focuses on challenge response methods based on a verify-prover-
model using freshness to prevent replay attacks. The verification of the authentication
can be established by three different cryptography schemes:

1. signature-based schemes,

2. MAC-based schemes, or

3. encryption-based schemes.

In the abstract sender receiver model (cf. Figure 3.23) of the use cases, the sender
always possesses a private secret key to authenticate towards the receiver, which knows
the corresponding key for verifying the sender’s authenticity. In case of a signature-
based scheme or a public encryption scheme the public key needs to be rolled out to
the receiver prior to the use case.

For symmetric schemes (MAC-based or symmetric encryption based schemes) the
sender and receiver need to hold a pre-shared secret key. Usually in case of hard
resource constraints symmetric schemes are favored, if the loss in security strength
is acceptable. However, for this case both entities, the sender and the receiver, need
additional measures to maintain integrity and prevent information disclosure with
respect to the secret key material. The freshness needed for a robust challenge response
scheme is typically achieved on protocol level, e.g., by adding a nonce, rather than by
cryptographic means. All use cases have at least many-to-one relation between multiple
senders and one receiver, or multiple senders which can authenticate towards multiple
receivers.

The main differences between the use cases are the available computational power
and memory of the entities.

Table 3.15 shows the ranges between the worst case and the best case of the require-
ments of all sub use cases.

Sender

{g|s/mg/d}
[S]

Receiver

{v/mv/e}

m
Data

1:n

Figure 3.23: Communication model of the use case challenge response authentication
using signatures.

Use Cases and Requirements
Use Cases: Challenge Response Authentication 39

Properties Sender Receiver
Latency Low : Medium Low
Executions over product lifetime Unlimited Unlimited
Size of processed data ≤32B: <1MB ≤32B: <1MB
Physical accessibility rescticted accessible
Computational power Embedded : Server Deep. Embedded :

Server
RAM availability Embedded : Server Deep. Embedded :

Server
Storage availability Embedded : Server Deep. Embedded :

Server
Key pairs ≤10: ≤100.000 ≤10 : ≤100
Data dissipation one-to-many, many-to-many
Life time >5 years
Current security level ≤80 bits : ≤256 bits

Table 3.15: Requirement ranges of the use cases challenge response authentication.

40 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.5.1 Secure Access Control

The receiver represents an automotive ECU that restricts access to certain services
and data of the ECU such as flashing. Only authorized entities shall be able to unlock
these operations to access the data/services. Typical entities are manufacturers in field
returns or car service stations to enroll (updated) firmware.

There are multiple ways to implement such a authorization check via a challenge
response scheme:

• signature-based verification scheme

• MAC-based verification scheme

• public key encryption scheme

• symmetric encryption scheme

The signature-based scheme with a private and public key pair works as follows: A
public-private key pair is generated in a secure environment (e.g., the backend) and the
public key is deployed to the receivers (e.g., during production). If an accessing sender
entity wants to unlock the receiver, it sends an “Unlock Request” to the receiver. The
receiver generates a random seed with enough entropy and a secure bit-length and then
sends it as “challenge” to the sender. The seed shall ensure the freshness to protect the
unlock against replay attacks. The sender can proof the possession of the valid private
key by signing the challenge seed with the private key, which corresponds to the public
key stored in the receiver. The sender sends the generated signature as “response” back
to the receiver, where the signature gets verified. The receiver verifies the signature
with the public key against the original seed. If these match, the receiver can grant the
sender access to the services/data. The first alternative is to exchange the signature
scheme with a MAC verification scheme in terms of a MAC generation on sender side
and MAC verification on receiver side instead of the respective signature operations.
The overall flow of the protocol is in general identical to the signature-based scheme.

In case an encryption operation is used for the authorization verification in the
challenge response protocol, the overall flow is identical with exception of the specific
cryptographic operation changes. Hence, the challenge generated by the receiver (ECU)
is a encrypted random number. The correct response from the sender to this challenge
is the correct decrypted random number. This random number is than send in plain
back to the receiver for verification. Also, in this setting the public key operations are
performed on the ECU with a public key, while the private key operations a performed
on a trusted tool. In case a symmetric encryption based scheme is used in the challenge
response scheme the secret keys needs to be pre-shared between sender (tool) and
receiver (ECU). The general challenge response protocol with abstract process steps is
depicted in Figure 3.25.

Threat Model

The threat model of the use case secure access control leverages symmetric or asymmet-
ric cryptographic algorithms, as shown in Figure 3.24, to ensure that only authorized
entity is gaining access.

Use Cases and Requirements
Use Cases: Challenge Response Authentication 41

Additional security operation like certificate generation and verification might be
required for some implementations of this use case. This is for instance the case, if a
remote diagnostic access is requested, where a backend is connecting to the ECU as a
tool via internet or other infrastructure based long distance communication channel.

Properties and Requirements

Table 3.16 depicts the non-security related requirements for implementing the use
case. For this use case the properties and requirements are derived for implementing
secure unlock in the automotive domain on an ECU. In case symmetric cryptographic
algorithms are used for verification of the authorization for access control the number
of key pairs are growing, because device unique key pairs are required. Hence, the key
pairs on the ECUs stay low, but are unique, while on tool side multiple keys might be
stored for generation of the correct response.

Sender: Tool

{g|s/mg/d}
[S]

Receiver: ECU

{v/mv/e}

m
Data

n

Figure 3.24: Communication model of the use case secure access control.

Properties Tool ECU
Latency Low Low
Executions over product lifetime unlimited unlimited
Size of processed data ≤32B: ≤1MB ≤32B: ≤1MB
Physical accessibility restricted accessible
Computational power Server Deep. Embedded :

Embedded
RAM availability Server Deep. Embedded :

Embedded
Storage availability Server Deep. Embedded :

Embedded
Key pairs ≤10 : ≤1.000.000 ≤10 : ≤1.000.000
Data dissipation many-to-many
Life time >5 years
Current security level ≤80 bits : ≤128 bits

Table 3.16: Requirements of the use case secure access control.

42 Use Cases and Requirements
D1.1 - Definition of Use Cases

Tool

Tool

ECU

ECU

Unlock Request

Generate random challenge

Random challenge seed

sign response

Response

verify signature

Unlock granted

Figure 3.25: Sequence diagram of the secure unlock use case.

Use Cases and Requirements
Use Cases: Challenge Response Authentication 43

3.5.2 (Remote) Attestation

In this use case, a remote verifier wants to ensure that a specific application of a
target platform is in the intended state and detects possible manipulations. The target
platform is denoted as prover, which attests the integrity of the system to the remote
verifier (cf. Figure 3.26).

The verifier requests an attestation from the prover and transmits nonce as freshness
value along with the request. After receiving the request, the prover platform computes
a hash over the target application to measure its integrity. Then, the hash is signed with
the platform’s private key along with the nonce. The outputted signature is usually
encapsulated in a certificate and transmitted to the verifier. The verifier validates the
signature and compares the resulting hash against the expected hash from a local
database for valid application states.

In a typical setup e.g., from the trusted computing group, the hash computation over
the application and the signature generation is executed in a trusted environment such
as a trusted platform module (TPM), cf. [Bar06a].

Threat Model

The threat model included in the SRM for the use case (remote) attestation is depicted
in Figure 3.26. The primary security goal of this use case is the authenticity of the
sender (the prover). Therefore, the verifier requested an attestation response together
with freshness values to avoid replay attacks. Sometimes, the entire history of the
different states of the prover is incorporated in the sign response to the prover. This is
needed to ensure that the system’s authenticity is valid from the initiation of the system
of the prover to the current measurement of the response. A pre-condition this use
case is that the public key of the prover is securely exchanged with a verifier because
the verifier needs the public key of the prover to verify its response, either a signed
message or a signed certificate deeding on the implementation of the scheme. The
verifier can request the state of multiple provers concurrently and, thus, has an m-1
relation to the prover.

Properties and Requirements

Table 3.17 depicts the non-security related requirements for implementing the use case.

Sender: Prover

{g|s}
[S]

Receiver: Verifier

{v}

m
Data

1

Figure 3.26: Communication model of the use case (remote) attestation.

44 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties Prover Verifier
Latency Medium Low
Executions over product lifetime Unlimited Unlimited
Size of processed data ≤64B: ≤1MB ≤64B: ≤1MB
Physical accessibility untrusted trusted
Computational power Embedded Server
RAM availability Embedded Server
Storage availability Embedded Server
Key pairs ≤10 ≤100
Data dissipation many-to-one
Life time >5 years
Current security level ≤256 bits

Table 3.17: Requirements of the use case (remote) attestation.

Prover

Prover

Verifier

Verifier

Attestation request + nonce

Compute hash over app

sign hash + nonce

Signed hash + nonce

verify signature

Compare hash against reference

Figure 3.27: Sequence diagram of the (remote) attestation use case.

Use Cases and Requirements
Use Cases: Challenge Response Authentication 45

3.6 Use Cases: Signature Freshness

The use cases within this cluster all share the necessity of having a fresh signature.
Thus, it must be ensured that the transmitted data is both authenticated and fresh. The
corresponding communication model is shown in Figure 3.28.

In general, one party generates a signature or a MAC together with a freshness
value, e.g. a counter, a timestamp, or a nonce and the other party verifies the fresh
authenticity token. Figure 3.28 represents the example where the sender generates
the signature or MAC and the receiver verifies the token. This scheme is applied for the
use cases secure time distribution (Section 3.6.1), vehicle-to-vehicle communication
(Section 3.6.3) and sensor data transmission (Section 3.6.4). For the use case status
request OCSP (Section 3.6.2), the cryptographic operations are switched, i.e. the
sender verifies the signed feedback message from the receiver.

Authenticity is usually achieved by the verification of an asymmetric signature. For
this, the data is signed by the sender with her private key and verified by the receiver
using the sender’s public key. The easiest way to achieve data or signature freshness is
letting the signer sign a random nonce (beforehand chosen by the verifier) together
with the payload. If the random nonce is sufficiently long, no adversary can forward
older data without breaking the signature scheme. Another way is to sign a timestamp
together with the payload. This approach enables the verifier to check the freshness
directly. This however, requires synchronized clocks. Finally, a third way to ensure
freshness is to sign a sequence number together with the payload. In this case, both
signer and verifier need to agree on a starting sequence number via a secure channel
and hold their respective current sequence number as a counter. Upon reception, the
verifier can check whether the sequence number has been increased and is within a
reasonable range to verify that no old data has been replayed.

Table 3.18 shows the ranges between the worst case and the best case of the require-
ments of all use cases in this cluster.

Sender

{g|s/mg}
[S]

Receiver

{v/mv}

1
Data

n

Figure 3.28: Communication model of the use cases signature freshness.

46 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties Sender Receiver
Latency Very very low : Low Very very low : Low
Executions over product lifetime limited : unlimited limited : unlimited
Size of processed data ≤1KB:≤1MB ≤1KB:≤1MB
Physical accessibility untrusted:trusted untrusted:trusted
Computational power Deeply embed-

ded:server
Industry PC:Server

RAM availability Deeply embed-
ded:server

Industry PC:Server

Storage availability Deeply embed-
ded:server

Industry PC:Server

Key pairs ≤10:<1.000.000 ≤1.000
Data dissipation one-to-many, many-to-many, many-to-one
Life time ≤1 day
Current security level ≤128 bits

Table 3.18: Requirements of the use case cluster signature freshness.

Use Cases and Requirements
Use Cases: Signature Freshness 47

3.6.1 Secure Time Distribution

Any device that requires an accurate time needs to synchronize occasionally. By using
a signature, the data authenticity and integrity of the distributed time can be ensured.
When requesting synchronization, the End-Entity (EE) appends a random nonce. The
Backend’s signature is computed over the nonce and the payload using the private key
in a trusted environment. The corresponding public key, which is used for verification,
is stored inside the EE in a tamper-protected storage. Only if the signature verification
is successful and data freshness is ensured by checking the nonce, the synchronization
data is used.

The whole process is visualized in Figure 3.30. Note that to prevent an attacker
delaying the signed synchronization data, the EE must check that the backend responds
within an appropriately short time.

Threat Model

When mapping this use case to the SRM in Figure 3.29, the sender is the backend or
a trusted time server and the receiver is the EE that requires time synchronization. A
secure time distribution can be crucial to protocols whose security relies on synchronized
clocks. Additionally, denial of service or forcing of faults (underflows, etc.) could be
achieved with a tampered time. To do so, an attacker can

• spoof the backend’s identity to send her own data or

• tamper the backend’s data or

• tamper the data sent to the receiver or

• tamper the EE’s data reception.

Additionally, the attacker could replay old data even if the protocol is secured against
the above four threats. Thus, freshness needs to be ensured as well. The backend must
be able to perform re-keying and can revoke keys – both to maintain long term security.
The receiving EE needs to verify the backend’s certificate.

Properties and Requirements

Table 3.19 shows the requirements for an implementation of this use case. Note that
the receiving EE usually could also work with only one key pair. However, if more than
one trusted time server shall be available, one key pair must be stored for each of them.

Sender: Backend

{g|s}
[S]

Receiver: EE

{v}

1
Data

n

Figure 3.29: Communication model of the use case secure time distribution.

48 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties Backend EE
Latency Very low Very low
Executions over product lifetime limited limited
Size of processed data <1KB <1KB
Physical accessibility trusted untrusted
Computational power Server Industry PC
RAM availability Server Industry PC
Storage availability Server Industry PC
Key pairs ≤10 ≤1.000
Data dissipation one-to-many
Life time ≤1 day
Current security level ≤128 bits

Table 3.19: Requirements of the use case secure time distribution.

Backend

Backend

EE

EE

Generate random nonce n

Time synchronization request
containing n

sign sync data + n

Signed sync data + n

verify Signature

validate n

Synchronize Clock

Figure 3.30: Sequence diagram of the use case secure time distribution.

Use Cases and Requirements
Use Cases: Signature Freshness 49

3.6.2 Status Request OCSP

Before using a certificate, entities must validate whether the respective certificate is
revoked or not. One method to perform this is to query the CA for a signed response
about the status of this certificate. A protocol that supports querying the CA about the
status of the certificate is OCSP [RFC6960]. One possible value for the status of the
certificate is good, which indicates that the certificate is not revoked. Another value is
revoked, which indicates that this certificate is revoked and thus not valid.

Threat Model

The communication model of this use case is depicted in Figure 3.31. Note that it differs
slightly from Figure 3.28 as the sender also verifies. The authenticity and freshness of
the response on a request from the CA to the end-entity need to be protected. Hence, a
signature scheme together with a nonce as freshness on protocol level hinders replay
attacks and forged responses from a malicious entity or imitation of the certification
authority (CA) as a communication partner. Furthermore, the CA needs the ability
to generate short term certificates to document the validity of other certificates. An
additional access control scheme is sometimes put in place before processing every
request to filter unauthorized requests.

Properties and Requirements

Table 3.20 shows the non-security related requirements for implementing the use case.

Sender: End-Entity

{v} [S]

Receiver: CA

{g|s}

n
Data

1

Figure 3.31: Communication model of the use case status request OSCP.

50 Use Cases and Requirements
D1.1 - Definition of Use Cases

Properties End-Entity CA
Latency Low Low
Executions over product lifetime unlimited limited
Size of processed data ≤1MB ≤1MB
Physical accessibility untrusted trusted
Computational power IT Server
RAM availability IT Server
Storage availability IT Server
Key pairs >1.000.000 >1.000.000
Data dissipation many-to-one
Life time ≤1 day
Current security level ≤128 bits

Table 3.20: Requirements of the use case status request OSCP.

EE

EE

CA

CA

Generate random nonce n

Status request
containing n

sign status response including n

Status Response
and Signature

verify Signature

Validate n

Figure 3.32: Sequence diagram of the use case status request OCSP.

Use Cases and Requirements
Use Cases: Signature Freshness 51

3.6.3 Vehicle-to-Vehicle Communication

Vehicle-to-vehicle communication is an upcoming technology that is supposed to in-
crease traffic safety. To achieve this, vehicles shall collect data such as surrounding
conditions (weather, road conditions, traffic density), warnings (accidents) and vehicle-
inherent data (e.g. position and velocity) to share them via a wireless channel to other
vehicles. The receiving entities must be ensured that the data is authentic and fresh.

Figure 3.34 shows the use case. To ensure the freshness, a timestamp is added to
the payload, which requires precise and at least a roughly synchronized time in all
participating vehicles.

Threat Model

For this use-case, the sender in Figure 3.33 is the vehicle that shares data, and the
receivers are the vehicles that receive the data. In this scenario, it is essential that the
vehicle-to-vehicle communication cannot be tampered. Attackers could cause severe
traffic problems and even risk the passenger’s health and life if it would be possible for
them to inject their malicious data (e.g. wrong accident warnings).

To do so, an attacker can

• spoof a vehicle’s identity to send her own data or

• pretend to be a vehicle even though she is not or

• tamper a vehicle’s data or

• tamper the data sent via the wireless channel or

• tamper a vehicle’s data reception.

Additionally, the attacker could replay old data even if the protocol is secured against
the above threats. Thus, freshness needs to be ensured as well. Depending on the
computational power of the sensor, different cartographic authentication schemes might
be used to ensure low latency. The sending vehicle (Vehicle A) must be able to generate
keys, compute signatures, revoke keys, and re-keying on top of sending authentic
messages to maintain its status as a valid member in the certificate and trust chain
of the public key infrastructure. Vehicle B (the receiving vehicle) needs to be able to
verify the signatures of the received messages.

Properties and Requirements

Table 3.21 shows the requirements for an implementation of this use case. It is important
to stress that even though the data dissipation of this use case is many-to-many, a vehicle
always signs data once but needs to verify data many times. Thus, the receiver latency
is given with very very low, but the sender’s latency may be only very low. If the sent
data is not crucial to safety, the latency requirements may be chosen less strictly.

The processed data usually should be below 1KB. However, if images shall be shared
(e.g. for special traffic signs), the data size could grow to multiple 100KB.

52 Use Cases and Requirements
D1.1 - Definition of Use Cases

Sender: Vehicle A

{g|s}
[S]

Receiver: Vehicle B

{v}

n
Data

1

Figure 3.33: Communication model of the use case vehicle-to-vehicle communication.

Properties Vehicle A Vehicle B
Latency Very low Very very low
Executions over product lifetime Unlimited Unlimited
Size of processed data ≤1MB ≤1MB
Physical accessibility untrusted untrusted
Computational power industry PC
RAM availability industry PC
Storage availability industry PC
Key pairs ≤10 ≤1.000
Data dissipation many-to-many
Life time ≤1 day
Current security level ≤128 bits

Table 3.21: Requirements of the use case vehicle-to-vehicle communication.

Use Cases and Requirements
Use Cases: Signature Freshness 53

Vehicle 1

Vehicle 1

Vehicle 2

Vehicle 2

Add time stamp to payload

sign payload

Payload and signature

verify signature

Check if time stamp
is within reasonable past

Process payload

Figure 3.34: Sequence diagram of the use case vehicle-to-vehicle communication.

54 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.6.4 Sensor Data Transmission

Sensor data is what a system perceives of its surroundings or its state. Thus, it is crucial
to secure the data in any scenario where an attacker can alter them maliciously. For this,
a scheme to generate an authentication token - either a signature or a MAC over the
payload - is applied. The sensor generates the token over its data before transmitting it
to the ECU. Also, data freshness must be ensured in some cases.

Figure 3.36 depicts the use case. A sequence number is added to the sensor’s payload
data. After verifying the signature, the ECU checks whether the sequence number is
reasonably higher than the last received one to hinder replay attacks.

Threat Model

In Figure 3.28, the sender is the sensor and the receiver is the host ECU. As already
pointed out, sensor data is a system’s perception, and thus, tampering this data may
significantly influence the results or actions the system produces. For example, a
tampered distance measurement of a car’s radar may let this car initiate an emergency
braking, which poses a safety threat to traffic participants. As depicted in Figure 3.35,
an attacker can

• spoof a sensor’s identity to send her own data or

• tamper a sensor’s data or

• tamper the transmitted data or

• tamper the ECU’s data reception.

Additionally, the attacker could replay old data even if the protocol is secured
against the above threats. For example, if it would be possible to inject old distance
measurements that contain a short result (from a low-velocity situation) into a situation
where the vehicle moves with high velocity, the exact above scenario of an emergency
braking could be provoked. Thus, data freshness needs to be ensured as well.

Depending on the computational power of the sensor, different cryptographic au-
thentication schemes might be used to ensure very low latency. Besides that, this use
case has no additional requirements for any additional security operation, because it
just provides a basic security measure to ensure authenticity with minimal latency.

Properties and Requirements

Table 3.22 shows the requirements for an implementation of this use case. Note that
the size of processed data mainly depends on the sensor type and could be even larger
than given here for the case that cameras are included in this use case as well.

Also, the latency requirement may be less strict for systems that are not relevant for
safety. However, it is essential to note that often, one ECU receives data from multiple
sensors, which leads to a restriction of the ECU’s latency.

Use Cases and Requirements
Use Cases: Signature Freshness 55

Sender: Sensor

{g|s/mg}
[TR]

Receiver: ECU

{v/mv}

n
Data

1

Figure 3.35: Communication model of the use case sensor data transmission.

Properties Sensor ECU
Latency Very very low Very very low
Executions over product lifetime Unlimited Unlimited
Size of processed data <1KB <1KB
Physical accessibility untrusted untrusted
Computational power Deeply embedded Embedded
RAM availability Deeply embedded Embedded
Storage availability Deeply embedded Embedded
Key pairs ≤10 ≤1.000
Data dissipation many-to-one
Life time ≤1 day
Current security level ≤128 bits

Table 3.22: Requirements of the use case sensor data transmission.

56 Use Cases and Requirements
D1.1 - Definition of Use Cases

Sensor

Sensor

ECU

ECU

Add Sequence Number to Payload

sign payload

Payload and signature

verify signature and seq. number

Process payload

Figure 3.36: Sequence diagram of the use case sensor data transmission.

Use Cases and Requirements
Use Cases: Signature Freshness 57

3.7 Use Cases: Key Pair Generation

This cluster of use cases considers the generation of key pairs both for resource-
constrained devices as well as server systems. The public key is, in most cases, certified
by a backend or a CA. In the context of PQC, this is an interesting and challenging
family of use cases because the involved cryptographic operation is mostly affected
by quantum computers. All use cases consider operations like key pair generation
and signature calculation when issuing certificates, secure delivery of key material is
essential, and a large number of devices is affected.

In Section 3.7.1 the key pair is generated on a device, and the CA is providing a
certificate to integrate the public key of the device into the trust chain of the PKI. In
this use case, the sender needs to perform a key generation and a signature verification
for each generated key pair. In Section 3.7.2, we describe the use case of generating
the key pair at the PKI side. In this second use case, the sender (CA in the backend)
performs a key generation and signature generation.

Table 3.23 shows the ranges between the worst case and the best case of the require-
ments of all sub-use cases.

Sender

{g|v/s}
[SI]

Receiver

{g|s/v}

1
Data

1

Figure 3.37: Communication model of the use case key generation on device.

Properties Sender Receiver
Latency Very Low Very Low
Executions over product lifetime limited limited
Size of processed data ≤16KB ≤16KB
Physical accessibility untrusted:trusted untrusted:trusted
Computational power Embedded:Server Deep. emb.:Server
RAM availability Embedded:Server Deep. emb.:Server
Storage availability Embedded:Server Deep. emb.:Server
Key pairs ≤10: >1.000.000 >1.000.000: ≤10
Data dissipation one-to-one
Life time >5 years
Current security level ≤128 bits

Table 3.23: Requirement ranges of the key pair generation use cases.

58 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.7.1 Key Generation on Device

Some devices require one or maybe multiple device unique keys. The private key of the
device’s unique private and public key pair shall not leave the device due to security
policies. However, the public key of this pair needs to be integrated into the chain of
trust of the corresponding public key infrastructure. Therefore, during production the
public key needs to be signed by the corresponding private key of the CA. In some
cases, the public key needs to be integrated into the trust chain of the corresponding
CA, when the device is already deployed in the field.

The CA may check the quality of the public key by trying to find weaknesses before
signing it. Usually, this is done by performing some tests about the mathematical
properties of the key, see [Bar06b]. If the quality of the key is insufficient, the CA
does not integrate the public key into the trust chain and thus does not present a
certificate to the requesting device. Also, the CA might check if the requesting device is
in possession of the private key corresponding to the public key that has been requested
to get signed. This procedure is called proof-of-possession (PoP). Such a proof requires
that the device performs an operation using the private key. The CA can verify the result
of this operation. PoP is usually performed by signing the request with the private key.
The CA validates this signature, and if the signature is correct, then it is assured of the
existence and possession of the private key by the EE. If signing is not possible, then
the CA either creates an encrypted challenge that the end-entity needs to decrypt by
using the private key, or it encrypts the certificate. The CA does not issue a certificate if
it fails to verify the possession of the corresponding private key by the device.

Threat Model

The primary threat is that the public key of the device is not signed with the intended
and corresponding private key of the CA. Therefore, it needs to be ensured that the
one-to-one communication is correctly set up. During production, this can be ensured
due to a physical connection and a trusted operation environment. For the case of a re-
keying in the field, an additional secure communication channel needs to be established
to ensure the authenticity of the sending and receiving data between the device and
the backend. Therefore, a secure session-based secure channel can be leveraged, as
explained in Section 3.8.1.

Properties and Requirements

Table 3.24 depicts the non-security related requirements for implementing the use case.
For this use case, the properties and requirements are derived for implementing key
generation on device in the automotive domain on an ECU.

Sender: Device

{g|v}
[S]

Receiver: CA

{g|s}

1
Data

1

Figure 3.38: Communication model of the use case key generation on device.

Use Cases and Requirements
Use Cases: Key Pair Generation 59

Properties Device CA
Latency Very Low Very Low
Executions over product lifetime limited limited
Size of processed data ≤16KB ≤16KB
Physical accessibility untrusted trusted
Computational power Embedded Server
RAM availability Embedded Server
Storage availability Embedded Server
Key pairs ≤10 >1.000.000
Data dissipation one-to-one
Life time >5 years
Current security level ≤128 bits

Table 3.24: Requirements of the use case key generation on device.

Device

Device

Backend

Backend

generate key pair

Secured communication channel

Public key

sign public key with CA key

Signed public key and public CA key

verify signature

Figure 3.39: Sequence diagram of the key generation on device use case.

60 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.7.2 Key Generation with PKI and Deployed on Device

This use case is very similar to the key generation on device use case. The only difference
is the sender and receiver instances. The direction of the unidirectional secure transport
channel just changed, and the instances just swapped. The backend (usually a CA)
becomes the sender, and the device becomes the receiver. In this use case, the private
and public key is generated in the backend of the CA and transferred securely to the
device by leveraging an additional secured transportation channel. This use case also
covers the generation of secret keys for the device in the backend. Also, the generated
secret keys in the backend need to be transferred securely by an additional secured
transportation channel to the device. The security properties of the secure transport
channel are authenticity, integrity, and confidentiality. These properties are essential
to protect the secret and private keys or other confidential credentials.

Next to the keys (symmetric and asymmetric) generated for the device also the public
key of the signing CA is transferred. The public key of the CA is required to verify the
public key of the device that can be embedded in a certificate. This certificate is then
provisioned by the CA. The process steps of this use case are depicted in Figure 3.41.

Threat Model

The threat model of this use case has an additional threat compared to the previous
threat model of this use case in this cluster. Since the private and public key pair is
generated outside the device, the private key needs to be transferred from the CA to
the device in a confidential manner. Therefore, the sender and receiver model has
an additional security goal to the transferred data compared to the previous one, as
depicted in Figure 3.40.

The additional security operation for certificate generation and verification is required
for the current use case. In some cases the public key for the device is embedded in a
certificate.

Properties and Requirements

Table 3.25 depicts the non-security related requirements for implementing the use case.
For this use case, the properties and requirements are derived for implementing key
generation on the server-side and deployment on the device.

Sender: CA

{g|s}
[SI]

Receiver: Device

{v}

1
Data

1

Figure 3.40: Communication model of the use case key generation with PKI and de-
ployed on device.

Use Cases and Requirements
Use Cases: Key Pair Generation 61

Properties CA Device
Latency Very Low Very Low
Executions over product lifetime limited limited
Size of processed data ≤1MB ≤1MB
Physical accessibility trusted untrusted
Computational power Server Deeply embedded
RAM availability Server Deeply embedded
Storage availability Server Deeply embedded
Key pairs >1.000.000 ≤10
Data dissipation one-to-one
Life time >5 years
Current security level ≤128 bits

Table 3.25: Requirements of the use case key generation with PKI and deployed on
device.

Backend

Backend

Device

Device

generate key pair

Create certificate

sign certificate/keys with CA key

Secured communication channel

Signed certificate and key(s)

verify correctness of certificate

Figure 3.41: Sequence diagram of the key generation with PKI and deployed on device
use case.

62 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.8 Use Cases: Secure Channel Establishment

This section clusters use cases that enable the establishment of a secure channel. They
provide an authentic and confidential communication channel between two parties.
In general, a secure channel is required for multiple data exchange scenarios, e.g., to
collect status information, maintain remote devices, or transfer privacy-related data. In
contrast to the use cases described in Section 3.3 this cluster covers logical one-to-one
connections. The connections are managed as sessions so that an established channel
sustains for some time and messages are continuously transmitted bidirectionally.
Whereas a secure channel is established between two parties there is typically a single
server that handles connections to many clients as shown by Figure 3.42. Thus, the
server in the backend requires appropriate resources. The two use cases Session-based
Secure Channel and Password-authenticated Key Establishment belong to this use case
cluster. The first use case discusses a secure channel establishment and is detailed in
Section 3.8.1. The second use case is a scheme for access control and secure channel
establishment by exploiting a key-exchange scheme for an authenticated and encrypted
channel, see Section 3.8.2.

Both parties must be authentic and the exchanged data has to be confidential,
authentic, and fresh. So the parties mutually authenticate using digital signatures as
well as certificates or passwords. To ensure freshness during the exchange of data, the
nonce is introduced on the protocol level. The data is authenticated by symmetric MACs
or implicitly using authenticated encryption. The confidentiality of the exchanged
data is realized by symmetric encryption. The symmetric encryption uses a shared
session key which is initially established using an asymmetric key encapsulation or key
exchange mechanism.

Table 3.26 shows the ranges between the worst case and the best case of the re-
quirements of all sub use cases. In all sub use cases, the clients (initiator) has the
computational properties of a deeply embedded to an IT device and runs in a insecure
operation environment, while the back-end systems or stations run in an insecure or
controlled field with varying computation properties between embedded and server
systems. The latency on both sides varies between very very low to very low. The num-
ber of executions over the product live time is higher than 1024, and an unpredictable
amount of processed data per message varies between several bytes to more than 1 GB.
The lifetime validity of the cryptographic artifacts of the use cases are less than one
year to more than five years.

Sender

{g|mg/mv|e}
[SI]

Receiver

{g|mg/mv|d}

1
Data

1

Figure 3.42: Communication model of the cluster Secure Channel Establishment.

Use Cases and Requirements
Use Cases: Secure Channel Establishment 63

Properties Sender Receiver
Latency very very low:very

low
very very low:very
low

Executions over product lifetime unlimited unlimited
Size of processed data ≤64B:>1 GB ≤64B:>1 GB
Physical Accessibility restricted accessible
Computational power embedded:Server deeply embedded:IT
RAM availability embedded:Server deeply embedded:IT
Storage availability embedded:Server deeply embedded:IT
Key pairs ≤10:≤1000 ≤10:≤1000
Data dissipation one-to-one
Life time ≤1 year:>5 years
Current security level ∗:≤128 bits

Table 3.26: Requirements of the use case Secure Channel Establishment.
∗Depends on the password length.

64 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.8.1 Session-based Secure Channel

Maintaining and controlling many devices that are connected to a backend system over
an IP-based local, wide-area, or mobile network requires a secure channel to ensure
confidential and authentic communication. Typical use cases are, for instance, the
management of a car or truck fleet, the gathering and aggregation of sensor data, or the
remote control of a power plant. The needed services that provide these functionalities
are well scalable using IP-based communication protocols.

Transport Layer Security (TLS) enables the protection of the message payload. The
protocol specification provides mutual certification-based authentication and session-
based secure communication. If both the payload of messages and the metadata must
be protected against misuse a Virtual Private Network (VPN) should be used. Several
clients connect to a central VPN-gateway. Each connection is established individually
but the gateway can route network packages so that a protected network is build
up. There are multiple variants of VPN on different ISO/OSI levels, e.g., it could be
implemented using Transport Layer Security (TLS).

Threat Model

The utilized physical connection is an untrusted communication medium on which trans-
ferred data could be eavesdropped, forged, injected, or manipulated by intermediate
nodes.

In general, both parties must be authentic, and the exchanged data has to be confiden-
tial, authentic, and fresh. So the parties mutually authenticate using digital signatures
as well as certificates or passwords. The data is authenticated by symmetric MACs or
implicitly using authenticated encryption. The confidentiality of the exchanged data is
realized by symmetric encryption. The symmetric encryption uses a shared session key,
which is initially established using an asymmetric key encapsulation or key exchange
mechanism. For each session, a new nonce is generated, or a counter is incremented to
establish freshness on protocol level. The communication model including the crypto-
graphic operation are shown in Figure 3.43 and the sequence diagram in Figure 3.44.
In most cases, the backend side is more trusted than the client-side, hence the backend
side is most often controlling the communication channel. Therefore, the backend able
to trigger re-keying procedures or revoke keys or certificates.

Properties and Requirements

Table 3.27 depicts the non-security-related requirements for implementing the use
case. For this use case, the properties and requirements are derived for implementing a
session-based secure channel with a VPN or TLS in the scenarios described above.

Sender: Backend

{g|s/v|mg/mv|e/d}
[SI]

Receiver: Client(s)

{g|s/v|mg/mv|e/d}

1
Data

1

Figure 3.43: Communication model of the use case Session-based Secure Channel.

Use Cases and Requirements
Use Cases: Secure Channel Establishment 65

Properties Backend Client(s)
Latency very very low:very

low
very very low:very
low

Executions over product lifetime unlimited unlimited
Size of processed data ≤64B:>1 GB ≤64B:>1 GB
Physical accessibility untrusted:trusted untrusted
Computational power Server embedded:IT
RAM availability Server embedded:IT
Storage availability Server embedded:IT
Key pairs ≤1000 ≤1000
Data dissipation one-to-one
Life time ≤1 year
Current security level ≤128 bits

Table 3.27: Requirements of the use case Session-based Secure Channel.

backend

backend

client

client

establish session key and mutually authenticate

secured communication channel

Figure 3.44: Sequence diagram of the Session-based Secure Channel use case.

66 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.8.2 Password-authenticated Key Establishment

Small Bluetooth connected gadgets or modern chip-based passports, for instance, are
embedded or even deeply embedded devices with very tight constraints and do not
have an extensive or any user interface at all. However, these devices often require a
secure channel to communicate with their counterparts or even serve as an additional
security factor in multi-factor authentication to establish a secure channel Password-
authenticated Key Establishment (PAKE) protocols provide a high entropy key derivation
from a low entropy input, e.g., a password or a Personal Identification Number (PIN).
These protocols can be used for session key derivation for embedded devices. A
famous protocol of this family is Password Authenticated Connection Establishment
(PACE) which is applied in machine readable travel documents, for instance. It uses a
mapping function to derive Diffie-Hellman group parameters from a password, PIN,
or machine readable data, for agreeing on a session key by the execution of the Diffie-
Hellman scheme. The communication model including the cryptographic operations
is shown in Figure 3.45. The exemplary use case flow depicted in Figure 3.46 shows
how a client would initiate a key exchange derived from a password. Note that an
important constraint and prerequisite is that terminals need to have access to databases
maintaining the user passwords/secrets in order to decrypt the random number.

Threat Model

The utilized physical connection is an untrusted communication medium on which
transferred data could be eavesdropped, forged, injected, manipulated, or replayed
by intermediate nodes. Both parties share a secret or password, respectively. This
password must not be disclosed or tampered. In particular, PACE uses a MAC, symmetric
encryption, a cryptographic hash function, and the Diffie-Hellman scheme (in Elliptic
Curve groups) and nonces for freshness.

Properties and Requirements

Table 3.27 depicts the non-security-related requirements for implementing the use case.
For this use case, the properties and requirements are derived for implementing a key
session agreement using a PAKE protocol.

Sender: Client

{g|mg/mv|e}
[SI]

Receiver: Station

{g|mg/mv|d}

1
Data

1

Figure 3.45: Communication model of the use case Password-authenticated Key Estab-
lishment.

Use Cases and Requirements
Use Cases: Secure Channel Establishment 67

Properties Client Station
Latency very very low:very

low
very very low:very
low

Executions over product lifetime unlimited unlimited
Size of processed data ≤1KB:≤1MB ≤1KB:≤1MB
Physical accessibility untrusted untrusted
Computational power deeply embed-

ded:embedded
embedded:IT

RAM availability deeply embed-
ded:embedded

embedded:IT

Storage availability deeply embed-
ded:embedded

embedded:IT

Key pairs ≤10 ≤10
Data dissipation one-to-one
Life time >5 year
Current security level Depends on the password length

Table 3.28: Requirements of the use case Password-authenticated Key Establishment.

Client

Client

Terminal

Terminal

generate nonce

encrypted nonce with password

execute mapping-function

execute mapping-function

Diffie-Hellman key agreement

secured communication channel

Figure 3.46: Sequence diagram of the Password-authenticated Connection Establish-
ment use case.

68 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.9 Use Cases: Distributed Data Access

Due to the importance and value of all kinds of data, government agencies and other
stakeholders (e.g. insurance companies) will want to have access to it. However, this
is not always desirable for the user. Instead, the owner of a vehicle wants to retain
data sovereignty, although several government agencies could still jointly access this
information. For this reason, the issues of a distributed and consensual access to such
data must be urgently considered. It must be regulated which parties are granted
access, i.e. data should only be accessible if several participants decide so together.
If a consensus is achieved, at least two parties can gain access to the data. This is
impossible for one party alone. See Figure 3.47 and Figure 3.48 how to generate the
share. The procedure to regain the secret is given by Figure 3.49 and Figure 3.50.
In this use case the trusted party is a ECU inside the car and the paricipants are the
stakeholder having interests in gaining access to the critical data inside the car.

Unfortunately, such a use case is not implemented at the moment in the automotive
industry. However, the use case and its utilization of secret sharing is from an academic
perspective useful and might apply to the to use cases shortly described in Section 3.9.1
and Section 3.9.2. This new concept could solve some implementation issues of the use
cases in Section 3.9.1 and Section 3.9.2 concerning the architecture level and protocol
level. This secret sharing concept might become beneficial if the architecture in which
the use case is implemented does not contain secure storage.

The security goals for the secret sharing approach are hard to link to the traditional
security goals that are related to cryptographic primitives. This requirement is derived
mainly from the protocol level, where the first step of the secret sharing approach is
implemented in general.

Requirements

See Table 3.29 for the non-security related requirements needed for implementing
this use case. It should be noted that access to protected data does not have to be
particularly fast. However, the data must be protected reliably over an unusually long
period, as it may contain critical information.

Properties Other Party Trusted Party
Latency Low Low
Executions over product lifetime limited limited
Size of processed data ≤1KB ≤1KB
Physical Accessibility accessible restricted
Computational power Embedded Embedded
RAM availability Embedded Embedded
Storage availability Embedded Embedded
Key pairs ≤100 ≤100
Data dissipation one-to-one
Life time >10 years
Current security level ≤128 : ≤256 bits

Table 3.29: Requirements of the use case delegated access.

Use Cases and Requirements
Use Cases: Distributed Data Access 69

Trusted Party T

[]{} [STI]

Participant

[ST]{d}

1
Share

n

Figure 3.47: Communication model to generate and distribute shares to n participants.

Trusted Party T

Trusted Party T

Participant 1

Participant 1

Participant n

Participant n

generate secret key / use counter

generate n shares

distribute share

distribute share

Figure 3.48: Generating and distributing shares among n participants.

Participant

[]{} [R(S)]

Trusted Party T

[]{}

n
Share

1

Figure 3.49: Communication model for regaining a secret by collecting n shares.

Trusted Party T

Trusted Party T

Participant 1

Participant 1

Participant n

Participant n

request share

request share

transmit share

transmit share

combine shares to obtain the secret

Figure 3.50: Combining shares to regenerate the secret.

70 Use Cases and Requirements
D1.1 - Definition of Use Cases

3.9.1 Delegated Access Control

A black box is a device that records all relevant data during a crash. Possibly, in
the event of an accident, the owner of a vehicle may not want to provide this crash
information to other parties (e.g. the lawyer of an opponent). But if at least two
participants of the members of the group manufacturer, insurance, police, and the
owner itself work together, the secret data can be revealed. Another example of data
with special protection needs is motion profiles. Modern cars have activated permanent
GPS tracking, which results in large amounts of location data worth protecting. Hence,
the secret itself or a key providing access to the secret has to be divided into several
parts.

3.9.2 Secure Logging

Surprisingly, this use-case occurs relatively frequently and has interesting applications.
Therefore, it can be used for e.g., the construction of tachometers, operating hours
counters, or for the safe storage of a number of performed production steps. From the
security perspective, it is irrelevant what type of resource is counted, and therefore
counter-values can reliably be stored. In this use-case, we assume that no secure storage
is available. Otherwise, we would have a trivalent solution.

The basic idea is based on the following fact. If a counter reading is stored distributed
over several devices, a potential attacker must carry out several attacks, which makes
the attack more expensive and, with appropriate planning, economically unattractive.
Only if a sufficient number of these make their shares available can the secret be
reconstructed by the trusted party.

Furthermore, devices with better protection can get several shares (and thus gain
in importance), and simple ECUs manage only a few shares. By such a measure, the
costs of a possible attack can be finely balanced without significantly increasing the
hardware costs (tamper-resistant storage).

Use Cases and Requirements
Use Cases: Distributed Data Access 71

4 D1.2 - Requirements on Post Quantum
Schemes

In this chapter, we list selection criteria for the selection of proper cryptographic
algorithms for the use cases that are listed in Chapter 3. The selection criteria aim to
demonstrate the implications and considerations of replacing the current algorithms
with PQC algorithms in realistic use cases (from an industrial view). All the criteria
listed in this section represent a first rough approximation, which have to be refined
later. Although they are certainly not detailed enough to evaluate the cryptographic
algorithms reliably, they can be used in this work package to structure and evaluate
the use cases systematically.

4.1 Efficiency and Resources Footprint

Run-time and memory requirements are traditional key parameters for evaluating an
algorithm. These resources are particularly necessary for embedded devices that have
very few resources. For example, in the case of signatures, the time for generating
the keys, signature generation, and verification is essential. The use cases show which
of these parameters are relevant. If the verification has to be performed by a small
embedded device, this step should require limited resources. Hence, the use cases
should provide information about these facts as well. Similarly, the size of a private and
corresponding public key, a signature or the overhead of ciphertexts should be known.

The impact of the signature and keys sizes directly translates to requirements con-
cerning memory. Storing keys has an impact on the size of non-volatile memory, such as
ROM. The dynamic memory component size, e.g., RAM, is impacted by other algorithm
and implementation-specific criteria. In general, the block size of processing cipher-
or plain texts, as well as the signature size and message size, have direct impact on
the required dynamic memory consumption. But also the implementation of specific
parameters might have an impact on non-volatile memory consumption. To reflect
this impact on the memory, the use case descriptions in Chapter 3 provide a typical
platform-specific memory for the application of the use case. Hence, the platform char-
acteristics provided in Table 3.2 specify upper or lower boundaries for consideration of
memory utilization.

In general, requirements on computing power (DMIPS) and latency of a controller
are used to reflect the performance and execution speed of the different algorithms
on the controller. Thus, Table 3.2 also contains the boundary specification of these
two requirements for specific platforms. For each use case description, the typical
expectation values on the latency and performance shall be provided.

The definition of the use case requirements now allows deriving more specific require-
ments on potential algorithms used. It is important to note here, that these numbers

Use Cases and Requirements
D1.2 - Requirements on Post Quantum Schemes 73

Device Type Storage RAM
Deeply Embedded 64KB 10KB
Embedded 256KB 50KB
IT 512KB 128KB
Server 5MB 500KB

Figure 4.1: Labels for different device categories.

only represent what amounts to an estimate on potential capacities and are kept arti-
ficially low. Due to the larger resource requirements of post-quantum algorithms, it
may not be possible to fulfill all of the following requirements. Nonetheless, they are
useful in so far as that they give an anchor around which future investigations and
improvements can focus on. From a technological point of view, capabilities also get
large and more affordable with time, and as such should be able to afford larger sizes
in the future.

The requirements that follow are broken down by use case. They use the categories
listed in Figure 4.1 for the different device types and otherwise follow the notation
from Table 3.2. Ranges of resource requirements between A and B are denoted as A : B.

Secure Download (Section 3.2.1)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time (Latency) Backend Medium
ECU Low

Storage Backend Server
ECU Deeply Embed-

ded

RAM Backend Server
ECU Deeply Embed-

ded

Feature Activation (Section 3.2.2)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time (Latency) Backend Low
ECU Low

Storage Backend Server
ECU Embedded

RAM Backend Server
ECU Embedded

74 Use Cases and Requirements
D1.2 - Requirements on Post Quantum Schemes

Certificate Revocation List (Section 3.2.3)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time (Latency) CA Medium
End Entity Medium

Storage CA Server
End Entity IT

RAM CA Server
End Entity IT

Confidential Configuration (Section 3.3.1)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Backend
Client

Storage Backend Embedded : Server
Client Deeply Embedded : Server

RAM Backend Embedded : Server
Client Deeply Embedded : Server

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Ex-

change

Time Backend
Client

Storage Backend Embedded : Server
Client Deeply Embedded : Server

RAM Backend Embedded : Server
Client Deeply Embedded : Server

Encrypted Update (Section 3.3.2)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Backend
Client

Storage Backend Embedded : Server
Client Deeply Embedded : Server

RAM Backend Embedded : Server
Client Deeply Embedded : Server

Use Cases and Requirements
Efficiency and Resources Footprint 75

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Ex-

change

Time Backend
Client

Storage Backend Embedded : Server
Client Deeply Embedded : Server

RAM Backend Embedded : Server
Client Deeply Embedded : Server

Flashing via Onboard Diagnosis (Section 3.3.3)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Tool
ECU

Storage Tool IT
ECU Deeply Embedded

RAM Tool IT
ECU Deeply Embedded

Preloading Updates (Section 3.3.4)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time
Tool Low
Client Low

Storage
Tool IT
Client Deeply Embedded : Server

RAM
Tool IT
Client Deeply Embedded : Server

Secure Boot (Section 3.4.1)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Backend Very Low
ECU Very Low

Storage Backend Server
ECU Embedded

RAM Backend Server
ECU Embedded

Manipulation Detection (Section 3.4.2)

The use case ”Manipulation Detection” uses an HMAC as its security algorithm. As
the underlying algorithm itself is symmetric, it is so far not heavily impacted by quan-

76 Use Cases and Requirements
D1.2 - Requirements on Post Quantum Schemes

tum computers. Nonetheless, the situation could change, and thus a summary of its
constraints is presented.
Primitive Used HMAC
Time Very Low
Storage Backend
RAM Backend

Access Control
Primitive Used Signature

Signature Private Key Generation Signing Verification

Time Backend Low : Medium
Client Low : Medium

Storage Backend Server : Embedded
Client Server : Deeply Embedded

RAM Backend Server : Embedded
Client Server : Deeply Embedded

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Exchange

Time Tool Low
ECU Low

Storage Tool Server : Embedded
ECU Server : Deeply Embedded

RAM Tool Server : Embedded
ECU Server : Deeply Embedded

Remote Attestions (Section 3.5.2)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Prover Medium
Verifier Low

Storage Prover Embedded
Verifier Server

RAM Prover Embedded
Verifier Server

Secure Time Distribution (Section 3.6.1)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Backend Very Low
EE Low

Storage Backend Server
EE IT

RAM Backend Server
EE IT

Use Cases and Requirements
Efficiency and Resources Footprint 77

Status Request OCSP (Section 3.6.2)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time CA Low
End-Entity Low

Storage CA IT
End-Entity IT

RAM CA IT
End-Entity IT

Vehicle-to-Vehicle Communication (Section 3.6.3)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Vehicle A Very Low
Vehicle B Very Low

Storage Vehicle A IT
Vehicle B IT

RAM Vehicle A IT
Vehicle B IT

Sensor Data Transmission (Section 3.6.4)

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time Sensor Very Very Low
ECU Very Very Low

Storage Sensor Deeply Embedded
ECU Embedded

RAM Sensor Deeply Embedded
ECU Embedded

Key Generation on Device (Section 3.7.1)

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Exchange

Time Device Very Low
CA Very Low

Storage Device Embedded
CA Server

RAM Device Embedded
CA Server

78 Use Cases and Requirements
D1.2 - Requirements on Post Quantum Schemes

Key Generation with PKI (Section 3.7.2)

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Exchange

Time Device Very Low
CA Very Low

Storage Device Deeply Embedded
CA Server

RAM Device Deeply Embedded
CA Server

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time CA Very Low
Device Very Low

Storage CA Server
Device Deeply Embedded

RAM CA Server
Device Deeply Embedded

Delegated Access & Secure Logging (Section 3.9.1)

Both ”Delegated Access” and ”Secure Logging” do not define the cryptographic primi-
tives, thus only general constraints are given:

Primitive Used Variable
Time Low
Storage Embedded
RAM Embedded

Session-based Secure Channel (Section 3.8.1)

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Ex-

change

Time Backend Very Very Low : Very Low
Client Very Very Low : Very Low

Storage Backend Server
Client Embedded : IT

RAM Backend Server
Client Embedded : IT

Primitive Used Signature
Signature Private Key Generation Signing Verification

Time CA Very Very Low : Very Low
Device Very Very Low : Very Low

Storage CA Server
Device Embedded : IT

RAM CA Server
Device Embedded : IT

Use Cases and Requirements
Efficiency and Resources Footprint 79

Password-authenticated Key Establishment (Section 3.8.2)

Primitive Used Key Exchange
Key Exchange Private Key Generation Public Key Generation / Ex-

change

Time Backend Very Very Low : Very Low
Client Very Very Low : Very Low

Storage Backend Deeply Embedded : Embedded
Client Deeply Embedded : IT

RAM Backend Deeply Embedded : Embedded
Client Deply Embedded : IT

4.2 Resilience

Cryptographic methods require the correct choice of parameters. It is essential that
small improvements in cryptanalytic techniques do not have a significant impact on
the security of a scheme. Therefore, it should be possible to select universal parameter
sets, which can be used over a more extended period of time and which can be used
for standardization. Similarly, the parameters should provide a proper security-level
on quantum computers. Also, these parameter sets should be widely used for a long
time to increase confidence in an algorithm.

All public-key cryptographic primitives are based on certain hard mathematical
problems. For this reason, strong confidence in the underlying mathematical problem
is desirable (e.g., due to the duration of the investigation by the research community,
the variety of results such as NP-hardness or reductions to other well known problems).

Additionally, the number of citations in established scientific publications (impact
factor should be considered, too) and active discussions in relevant forums (e.g., the
PQC forum) is a good indicator of the quality of a mathematical problem. Similarly, the
existence of proofs and reductions which consider attackers with quantum computers
should be carefully taken into account.

The randomness used during a cryptographic operation is a central point. For this
reason, the use cases have to consider this issue carefully. It must be examined whether
the influence of weak randomness on security and effectiveness is known for the use
cases and underlying cryptographic primitives.

4.3 Ease of Implementation

Although an algorithm should be easy to understand and implement, serious problems
may arise. Laypersons could realize an algorithm without understanding the underlying
mathematics, which could lead to fatal weaknesses (”footgun”). For this reason, the use
cases should also be examined and classified to see whether the necessary post-quantum
algorithms provide an attack surface in this case.

80 Use Cases and Requirements
D1.2 - Requirements on Post Quantum Schemes

4.4 Physical Attacks

Side-channel attacks are a widespread tool to break cryptographic primitives. The
use cases can give valuable information which of these attacks may or may not be
relevant (e.g., because the attacker has no physical access to the device). The necessary
mechanisms and use cases should, therefore, also be evaluated according to which side-
channel attacks have already been investigated and how long the research community
is already working on such attacks. It is important to consider, if such attacks exist, how
expensive or efficient the countermeasures are in regard to a given use-case. Similarly,
constant-time implementations also need to be evaluated in a given context, and the
given security parameters.

An indication for any imposed threat on a device by implementation attacks is the
operating environment of the device. For most of the side-channel and fault injection
attacks, excluding cache timing attacks, the attacker needs to have physical access to the
target or needs to be in very close proximity for a specific time. For the scenario of the
upcoming remote side-channel and fault injection attacks (e.g., Rowhammer [Kim+14],
Meltdown [Lip+18], Spectre [Koc+19], or Plundervolt [Mur+20]), the previous as-
sumption on close proximity does not completely hold. Hence, implementations of
cryptographic algorithms via side-channel and fault-injection attacks might be con-
ducted if the algorithm is executed in an untrustworthy environment. In a trusted
environment, implementation attacks are of no concern. Of course, the risk of a
mounted implementation attack increases, if the environment becomes not trusted. If
the environment is only controlled instead of trusted, mounting is possible but still
considered very hard. In this case, an attack can at least be detected. If the environment
of operation is considered not secure, countermeasures against implementation at-
tacks should be considered for sure. However, the implementation of countermeasures
against implementation attacks like side-channel and fault injection attacks highly
depends on the application-specific protection need.

4.5 Additional Remarks

As additional remarks, the use cases should help to outline PQC-specific properties
and behavior of the algorithms, e.g., the property of statefulness of some signature
algorithm impact architectural and implementation decisions. These facts are important
because current signature schemes do not have this restriction. Hence this can have
severe impacts on industrial applications. Moreover, it could also be interesting to use
only algorithms from one family (e.g., lattice-based PQC) to keep the code base of a
practical implementation small.

From an industrial point of view, it is currently wholly open which methods can
be used in the long term. For this reason, the use cases should be examined to see
whether the underlying primitives have already been standardized by NIST (or similar
organizations) or whether this is intended soon.

Use Cases and Requirements
Physical Attacks 81

5 D1.3 - Requirements on Hardware
Platforms

5.1 Consideration Aspects

Looking at the vast amount and the diversity of the given use cases, it seems necessary
to group the use case requirements into a smaller number of hardware requirement
categories. It would not be helpful to end up with a dozen different hardware platforms
and, therefore, the same number of different demonstrators. While this categorizing
approach fits well for Micro Controller Units (MCU) and Central Processing Units (CPU),
a more differentiated look into the choice and the programming of Field-programmable
Gate Arrays (FPGA) is needed. A broader view of what the QuantumRISC project wants
to achieve has to be taken into account when it comes to FPGAs. For example, the
European strategies for digital sovereignty, the future production costs of application-
specific integrated circuits (ASIC), or the license models for development- and design
tools are of some importance with the choice of FPGA platforms and tools. Additionally,
the actual candidates for Post-quantum Cryptography (PQC) are in a wide range of
different algorithmic categories and cryptographic primitives.

In the next chapters, we will start with the definition of crypto agility in a new way,
focusing on PQC and hardware development, calling it “Hardware crypto agility” and
draw a line to the term “HW-SW Co-design.” After that, the hardware platforms and the
requirement mappings are defined. The later chapters conclude with the considerations
about FPGAs, the hardware programming languages, and tooling, merging them into
the FPGA requirements.

5.2 Hardware Crypto(graphic) Agility

There are two terms widely used when it comes to cryptographic implementations:

• Crypto(graphic) agility and

• Hardware-/Software Co-design (HW/SW Co-design).

While the first one (Crypto agility) mostly defines the need for easy and quick exchange
ability of cryptographic algorithms in an already productive environment, for example
when it comes to freshly discovered security vulnerabilities. Crypto agility applies
to pure software implementations and as well to the exchange of hardware. In the
context of the QuantumRISC project this maps to the implementations for MCUs and
CPUs and is not any requirement aspect for the choice of MCU and CPU hardware
platforms than more a design choice for Application Programming Interfaces (API) on
the software level. It might also come into account with the integration of the parts of
the demonstrator.

Use Cases and Requirements
D1.3 - Requirements on Hardware Platforms 83

A common definition of HW/SW Co-design is the simultaneous consideration of
software- and hardware parts and dependencies for building a system to optimize them
together for meeting the system level objectives. This surely applies strongly to the
broad range of use cases in this project. The requirements on MCU and CPU platforms
to enable a smooth HW/SW Co-design are shown in the upcoming Section 5.3.1 and
are by most derived from the use case requirements with some additions (see Table 5.1
for an example).

One of the bigger parts inside the QuantumRISC project will focus on the development
of hardware with FPGAs. Combined with the actual known algorithms for PQC, some
additional aspects have to be considered when it comes to the requirements for FPGA
hardware development:

• PQC does not feature the “one-solves-it-all” algorithm so far. And it is foreseeable
that way more different cryptographic primitives will be involved than in standard
Public Key Cryptography (RSA, ECC, etc.).

• Flexible combinations of the needed primitives.

• The rise of open source tooling and FPGA-chip solutions. As with Kerckhoffs’s
principle the development should contain as less secrets as possible.

• Licensing models and Non-disclosure Agreements (NDAs) for vendor tools and
FPGA platforms.

• The European strategies for digital sovereignty. Europe should become more
independent in hardware development and production (5G discussion e.g.)

• The common concept of blackbox IP-Cores might not fit.

• Easy exchange of modules through standardisation (e.g., RISC-V ISA)

• Reusability of modules in the sense of hardware libraries. New concepts through
Hardware Description Languages (HDL) like SpinalHDL.

• Choice of Softcore implementations (e.g., VexRiscv).

While all of the mentioned aspects could be seen inside the concept of HW/SW Co-
design, some of them are on a deeper level, then meeting the system-level objectives
for a cryptographic system. Take alone the point of open source tools for getting
independent from possible malicious injections done by the toolchain. This mitigation
is most likely not a system-level requirement in HW/SW Co-design. Another point
outside the scope of HW/SW Co-design is the European strategy for digital sovereignty.
One will hardly see this in a technical system specification (maybe coming in the future).

Furthermore, the aspects of exchanging and reusing modular components fit more
into the definition of cryptographic agility. Therefore we name this wide-range set of
aspects above “Hardware cryptographic agility” to differentiate the wide variety and
the broad origins of these requirements. This list is preliminary and might be expanded
during the project. In the following chapters, we dive deeper into what they mean for
choosing the platforms, toolchains, HDLs, and softcores.

84 Use Cases and Requirements
D1.3 - Requirements on Hardware Platforms

Requirement Value
Use case Secure Download 3.2.1
Abstraction model part ECU
Main Task Verify signature
PQC Algorithm XMSS - hashbased Signatures
Signature size ? KB
Public key size ? KB
Tree size ? KB
Latency Low
Computation power Deeply embedded
RAM Deeply embedded
Storage Deeply embedded
Storage hardend No
Hardware accelerators SHA256, SHA3
Key pairs <1000
Security level 192 bits
Security goals Verification, Integrity

Table 5.1: Example of a set of derived requirements for a specific use case.

5.3 Hardware Platforms

5.3.1 Microcontroller Units (MCU) and Central Processing Units (CPU)

Most of the requirements for MCUs and CPUs can be derived from the properties and
requirements for use cases defined in Section 3.1.3. Each use case contains a table about
them (Example: Table 3.5). As not all fields in these tables are needed as requirements
for MCUs or CPUs, a subset could be sufficient. Such a possible subset can be seen in
the example at the end of this chapter. This set of information should be good to go
for the choice of the key features on MCUs and CPUs, for example, the vendor, speed,
RAM size, and register width.

Further requirements for MCUs and CPUs are derivable from the thread models
and security features, which are tied to the abstraction model, defined in Section 3.1.
Again each use case gives an own instantiation of these. From this information, the
additional, necessary chip or board features can be defined, for example, hardened
storage, connectivity, or accelerators.

The next step in the QuantumRISC project is work package WP2 (Choice and En-
hancement of PQC-Algorithms and Protocols). With choosing the PQC algorithms and
defining their parameters, another necessary piece of information towards the choice
of hardware platforms is defined. Not every PQC algorithm fits into any of the defined
use cases. A signature-only algorithm would not make any sense combined with a use
case that needs key derivation. Instead of creating a vast, multidimensional matrix
with all combinations of the requirements mentioned above, a define-by-need approach
for each set of requirements is taken.

An example set of requirements is shown in Table 5.1.

Use Cases and Requirements
Hardware Platforms 85

sCPU Control
Logic

AES

RAM / Flash / ROM

Peripherals (e.g. CAN, UART)

Quantum Secure Zone Extension

Controller

PQC - Module

Ex
te

rn
al

 B
us

Internal Bus

Figure 5.1: A simple hardware architecture for PQC.

AES-256
(CCM, GCM)

Counters
(16x 64bit
monoton)

Internal NVM
(512 kB)

Evita HW-
Interface

Internal CPU
Internal RAM

(64kB)

AES-PRNG
(seeded by

TRNG)

Application CPU Bus Interface

Application RAMApplication NVM

Post-Quantum Crypto Core Application Core

Internal Bus

External Bus System

PQC-Module

Figure 5.2: A complex hardware architecture for PQC.

5.3.2 Some Architectural Considerations

Currently, two underlying hardware architectures for cryptographic applications are
common in the automotive industry. The first simple approach (cf. Figure 5.1) extends
the application CPU by basic cryptographic primitives, i.e., both the application and the
cryptographic operations work on the same hardware. This approach simplifies attacks,
thus weakening the implemented protection measures and should only be considered
for applications with low protection requirements. The significant advantage of this
approach is the cost since only a small additional effort is required.

5.3.3 Field Programmable Gate Arrays (FPGA)

As described in Section 5.2 (Hardware crypto agility), the requirements for choosing
an FPGA platform do not solely depend on the requirements derived from the use cases.
Before we map the named aspects as requirements for FPGA platforms, the necessary
properties get categorized in Table 5.2.

Based on this categorization, a rough mapping of the considerable aspects to the
property categories can be defined as follows:

• Choice of PQC algorithms and parameters get mapped onto
• Chip properties
• Board properties

86 Use Cases and Requirements
D1.3 - Requirements on Hardware Platforms

Category Property
FPGA Chip Amount and/or size of

Logic Cells
Lookup tables (LUTs)
Digital signal processors (DSPs)
In- and Output pins
BlockRAM

Development Board Additional Components as
SD-/DDR RAM
Controllers
Interfaces

Connectivity UART, USB, JTAG
HDMI, VGA
SD Card slot

Measurements Measuring connectors
Shunt resistors

Openness Closed/Open Tools
License models
Non disclosure agreements (NDAs)

Table 5.2: Categorizing the FPGA properties into categories.

• Use case and demonstrator requirements get mapped onto
• Board properties
• Connectivity properties

• Side-channel analysis and countermeasures get mapped onto
• Measurement properties

• System security, Malicious implants and injections, digital sovereignty, license
models, NDAs get mapped onto

• Openness

5.4 Softcores on FPGAs

At this point, it should be noted that FPGAs are used in this project as a rapid prototyping
platform. It should be clear that all findings can be transferred relatively easily to ASICs,
as these have a much better price/performance ratio for mass-market applications.
Therefore, the research on SW/HW co-design on FPGAs is very beneficial for the
application of the obtained result for the design of SoC or ASIC later on.

A flexible, robust, and open softcore implementation of the RISC-V ISA is required
for evaluation, testing, and benchmarking of the algorithms to be selected. The ob-
tained results must be verifiable by a broad scientific community. Therefore, only
non-commercial RISC-V implementations with an open-source license are considered.

Use Cases and Requirements
Softcores on FPGAs 87

This approach also allows a cost-saving use in the industry, which improves the usability
of the results achieved in the QuantumRISC project. Moreover, the results can be used
in the long term.

The RISC-V implementation used in this project should be designed in such a way
that any kind of change or improvement is easily possible. Certain parts of a calculation
have to take place at different pipeline-steps. For example, long calculations should be
distributed evenly over several pipeline-stages, so that the maximum clock frequency
of the design is not significantly affected. Hence, softcores that are specially optimized,
designed in less powerful hardware description languages or that have a high internal
complexity (e.g., super-scalar architectures), cannot be considered. Instead, simple,
stable, and “good-natured” implementations should be considered for the pending
more in-depth investigations.

It is already apparent that the selected implementation should be extendable in a
modular manner. This modularity is of particular importance if two different algorithms
are to be investigated in a typical hardware environment. In this case, an existing
cryptographic mechanism should not hinder the additional integration of another test
candidate. For this reason, it is important that the softcore implementation used is
modular and can be easily extended by new modules.

To be able to implement new algorithms quickly and without errors, a powerful
hardware description language has to be used. The classic languages such as VHDL or
Verilog hardly seem suitable for quickly creating hardware modules that can be flexibly
extended, parameterized, and integrated. For this reason, new types of description
languages must be used, which allow efficient working. Good examples are Chisel1
or SpinalHDL2. For this reason, however, the selected CPU must also be implemented
in the chosen language to efficiently process the planned work packages. Note that
previous experience has shown, that those meta hardware description languages pro-
duce hardware-modules whose performance is in no way inferior to VHDL or Verilog
implementations. Thus, the choice of implementation language is relatively free but
has a significant impact on the results of the benchmarks. Hence, this approach leads
to implementation with a small footprint on the FPGA and therefore results in low
production costs.

5.5 Connectivity

MCUs, CPUs, and FPGAs are widely available as part of evaluation or development
boards with onboard peripherals. It is to define which are needed. Again, the use cases
can offer a way to set the requirements for the connectivity. Usually, more peripherals
mean broader usage possibilities. But as a (or some) demonstrator(s) shall be built,
the size of the boards should be taken into account as well. As an example, imagine a
model car and the maximum size of parts that can be built into. A DIN-A5 sized board
might not fit well into that car.

1https://www.chisel-lang.org/
2https://spinalhdl.github.io/SpinalDoc-RTD/

88 Use Cases and Requirements
D1.3 - Requirements on Hardware Platforms

https://www.chisel-lang.org/
https://spinalhdl.github.io/SpinalDoc-RTD/

HDL name Base language From
SystemC C++ Open SystemC Initiative (OSCI)
Chisel Scala UC Berkeley
SpinalHDL Scala Charles Papon
MyHDL Python Jan Decaluwe
Cλash Haskell University of Twente and Myrtle Software Ltd

Table 5.3: Examples of high-level HDLs.

5.6 Hardware Description Languages (HDL)

Programming FPGAs is done with Hardware Description Languages (HDL). They
describe the hardware circuits that are built inside an FPGA. The same HDLs are used
to describe the circuitry of Application Specific Integrated Circuits (ASIC). Therefore
HDLs have wide usage in the development and production of different hardware. Two
common and standardized HDL are

• Verilog and

• Very High-Speed Integrated Circuit Hardware Description Language (VHDL).

The aspects of HW crypto agility (Section 5.2) and the requirements regarding the
softcore (Section 5.4) defined feature sets for HDLs that can hardly be fulfilled by
these two common, but quite inflexible ones. In the past decade, a lot of community
effort went into constructing new HDL concepts. The most interesting ones for usage
in the QuantumRISC project are keeping a standardized and industry-accepted format
while additionally offering some paradigms from classic software design. That means
programming in a high-level language (Python, Scala, SystemC), including the benefits
of object-orientated programming, functional programming, polymorphism, generic
instantiation, recursion, and many more are desired. The high-level code then gets
“compiled” (or “transcribed”) to a standard HDL (Verilog, VHDL). This approach leads
to short and good human-readable source code while still maintaining the existing
standards. Some of these high-level HDLs are listed in Table 5.3.

An extended list of HDLs can be found on the corresponding Wikipedia page3. The
choice of the HDL for this project has a dependency on the choice of the softcore. For
an efficient workflow, the softcore should be written in the same HDL as the future
FPGA implementations. Not quite a hard requirement, but the in-house knowledge of
the project partners with the chosen HDL has to be considered too. A first poll seems
to prefer SpinalHDL and VexRiscv (Softcore).

5.7 Electronic Design Automation Tools

In the last decades, the choice of Electronic Design Automation (EDA) tools for de-
veloping FPGA implementations was quite a simple choice. FPGA vendors kept their
chip-design and bitstream documentation as closed sources. Therefore the choice of
3https://en.wikipedia.org/wiki/Hardware_description_language

Use Cases and Requirements
Hardware Description Languages (HDL) 89

https://en.wikipedia.org/wiki/Hardware_description_language

Ha
rd

w
ar

e
Pl

ac
e

&
Ro

ut
e

Sy
nt

he
si

s

Te
st

fra
m

e-
w

or
k

Si
m

ul
at

io
n

Te
st

be
nc

h

M
et

a
HD

L

Vi
su

al
is

at
io

n

Si
m

ul
at

io
n

YOSYS

SPINAL HDL

ICESTORM /
Project Trellis

ARACHNE PNR /
Next PNR

QFLOW

GHDL ICARUS VERILOGVERILATOR

COCOTB

CHISEL PYTHON

GTK-Wave

Executable / D
ebug-O

utput

A
S

IC
-Layout

Lattice B
it-File

Legacy C
ode

Legacy C
ode

C�ASHmigen /
MYHDL

Debug-OutputDebug-Output

VHDL

Verilog

PYTHON

Figure 5.3: Some open-Source tools for EDA.

the FPGA platform was glued to the fitting vendor toolchains. Two main tuples are still
dominating the overall FPGA market:

• Vendor Xilinx and the ISE/Vivado toolchain.

• Vendor Altera (now Intel) and the Quartus toolchain.

These vendor toolchains areas closed source as the chips themselves. Migrating projects
to a platform of a different vendor are solely possible on HDL levels and forces to build
the whole hardware design around it from scratch. In terms of requirements, this leads
to a simple conclusion: Choose an FPGA vendor, and you are stuck to the toolchain
from the same vendor. The same applies to the other direction. When choosing a
vendor toolchain, you got to go with the same vendor for the FPGA.

Since 2013 this scenario relaxed in some aspects. While not going into too much
detail about the different stages of the development process for FPGA implementations,
the open-source toolchain “Yosys and Icestorm” got published. Since then, some more
degrees of freedom opened up in setting requirements for FPGA tooling. While the first
supported FPGA chips were reverse-engineered by community effort, right at the writing
of this document, the first vendor opened his chip- and bitstream documentation for
open source usage. It is foreseeable that during the running time of the QuantumRISC
project, more openness comes to FPGA development.

Moreover, Open Source tools with nearly the same capabilities as the vendor tools
could be in reach during the project Figure 5.3). This trend could lead to huge steps in
terms of security against hardware trapdoors and fault injections. Digital sovereignty
overall, and especially in Europe, would profit massively from such options.

90 Use Cases and Requirements
D1.3 - Requirements on Hardware Platforms

5.8 Preliminary Conclusion on Hardware Selection

The criteria described here for selecting the hardware are intentionally not very precise.
On the one hand, the still existing uncertainties in the selection of algorithms and, on
the other hand, more specific requirements resulting from the industrial application.
Further valuable additional information can be found in [Alb+19]. The recent paper
[SW20] gives deep insights into possible selection criteria, especially from an industrial
point of view.

Use Cases and Requirements
Preliminary Conclusion on Hardware Selection 91

Bibliography

[Alb+19] Martin R. Albrecht et al. “Implementing RLWE-based Schemes Using an
RSA Co-Processor”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019,
Issue 1 (2019), pp. 169–208. doi: 10.13154/tches.v2019.i1.169-
208. url: https://tches.iacr.org/index.php/TCHES/artic
le/view/7338.

[Bar06a] J. Christopher Bare. Attestation and Trusted Computing. 2006. url: https:
//courses.cs.washington.edu/courses/csep590/06wi/fin
alprojects/bare.pdf (visited on 03/09/2020). Access via https:
//courses.cs.washington.edu/.

[Bar06b] Elaine B. Barker. SP 800-89. Recommendation for Obtaining Assurances for
Digital Signature Applications. Tech. rep. Gaithersburg, MD, United States,
2006. url: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-89.pdf.

[BPM18] Milan Brož, Mikuláš Patočka, and Vashek Matyáš. “Practical Cryptographic
Data Integrity Protection with Full Disk Encryption”. In: ICT Systems Se-
curity and Privacy Protection. Ed. by Lech Jan Janczewski and Mirosław
Kutyłowski. Cham: Springer International Publishing, 2018, pp. 79–93.
isbn: 978-3-319-99828-2.

[Eur09] Seventh Research Framework Programme (2007-2013) of the European
Community. Specification and evaluation of e-security relevant use cases.
Dec. 1, 2009. url: https://www.evita-project.org/Deliver
ables/EVITAD2.1.pdf (visited on 11/13/2019). Access via https:
//www.evita-project.org.

[FR14] E. Fielding and J. Reschke. “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content”. In: IETF Request For Comments 7231 (June 2014).

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
1996. arXiv: quant-ph/9605043 [quant-ph].

[HiS09] HiS. Secure Hardware Extension (SHE) functional specification. Tech. rep.
v1.1. Hersteller Initiative Software, 2009.

[ISO13] ISO. Road vehicles—Unified diagnostic services (UDS)—Part 1: Specification
and requirements. Standard. Geneva, CH: International Organization for
Standardization, Mar. 2013.

[Kan+19] Liron Kaneti et al. “Secure Boot Revisited: Challenges for Secure Imple-
mentations in the Automotive Domain”. In: 17th Embedded Security in
Cars (escar) Europe. Nov. 2019.

Use Cases and Requirements
Bibliography 93

https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/
https://courses.cs.washington.edu/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-89.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-89.pdf
https://www.evita-project.org/Deliverables/EVITAD2.1.pdf
https://www.evita-project.org/Deliverables/EVITAD2.1.pdf
https://www.evita-project.org
https://www.evita-project.org
https://arxiv.org/abs/quant-ph/9605043

[KH17] Dmitry Kasatkin and Serge Hallyn. Integrity Measurement Architecture
(IMA). Tech. rep. 2017. url: http://downloads.sf.net/project/
linux-ima/linux-ima/Integrity_overview.pdf.

[Kim+14] Y. Kim et al. “Flipping bits in memory without accessing them: An ex-
perimental study of DRAM disturbance errors”. In: 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). 2014, pp. 361–
372.

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In:
2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019. IEEE, 2019, pp. 1–19.

[Lip+18] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”.
In: 27th USENIX Security Symposium (USENIX Security 18). 2018.

[Lip17] Andrew Liptak. Tesla extended the range of some Florida vehicles for drivers
to escape Hurricane Irma. Sept. 10, 2017. url: https://www.the
verge.com/2017/9/10/16283330/tesla-hurricane-irma-
update-florida-extend-range-model-s-x-60-60d (visited on
11/13/2019). Access via https://www.theverge.com.

[Mur+20] Kit Murdock et al. “Plundervolt: Software-based Fault Injection Attacks
against Intel SGX”. In: 41st IEEE Symposium on Security and Privacy
(S&P’20). 2020.

[Pre16] The Netherlands EU Presidency. QuantumManifesto. May 17, 2016. url: h
ttp://english.eu2016.nl/documents/publications/2016/
05/17/quantum-manifesto (visited on 05/18/2019). Access via
https://archive.org/.

[San+13] S. Santesson et al. “X.509 Internet Public Key Infrastructure Online Certifi-
cate Status Protocol - OCSP”. In: IETF Request For Comments 6960 (June
2013).

[Ser06] J. Sermersheim. “Lightweight Directory Access Protocol (LDAP): The Pro-
tocol”. In: IETF Request For Comments 4511 (June 2006).

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM J. Comput. 26.5
(Oct. 1997), pp. 1484–1509. issn: 0097-5397.

[SW20] Marc Stöttinger and Wen Wang. Post-Quantum Secure Architectures for
Automotive Hardware Secure Modules. https://eprint.iacr.org/2020/026.
2020.

[WS09] Dr. André Weimerskirch and Dr. Kai Schramm. Using software flashing
to secure embedded device updates. Apr. 13, 2009. url: https://www.
embedded.com/using-software-flashing-to-secure-embed
ded-device-updates/ (visited on 11/13/2019). Access via https:
//www.embedded.com.

94 Use Cases and Requirements
Bibliography

http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
https://www.theverge.com/2017/9/10/16283330/tesla-hurricane-irma-update-florida-extend-range-model-s-x-60-60d
https://www.theverge.com/2017/9/10/16283330/tesla-hurricane-irma-update-florida-extend-range-model-s-x-60-60d
https://www.theverge.com/2017/9/10/16283330/tesla-hurricane-irma-update-florida-extend-range-model-s-x-60-60d
https://www.theverge.com
http://english.eu2016.nl/documents/publications/2016/05/17/quantum-manifesto
http://english.eu2016.nl/documents/publications/2016/05/17/quantum-manifesto
http://english.eu2016.nl/documents/publications/2016/05/17/quantum-manifesto
https://archive.org/
https://www.embedded.com/using-software-flashing-to-secure-embedded-device-updates/
https://www.embedded.com/using-software-flashing-to-secure-embedded-device-updates/
https://www.embedded.com/using-software-flashing-to-secure-embedded-device-updates/
https://www.embedded.com
https://www.embedded.com

	Introduction
	Motivation for Research on Post Quantum Cryptography
	Document Structure

	Terminology
	D1.1 - Definition of Use Cases
	Abstraction Model
	Simple Sender Receiver Model
	Threat Model
	Non-Functional Requirements and Properties

	Use Cases: Authenticated One-to-Many
	Secure Download
	Feature Activation
	Certificate Revocation List LDAP/HTTP

	Use Cases: Encrypted & Authenticated One-to-Many
	Confidential Configuration
	Encrypted Software Update
	Flashing via Onboard Diagnosis
	Preloading Updates

	Use Cases: Authentication Check with Low Latency
	Secure Boot
	Manipulation Detection

	Use Cases: Challenge Response Authentication
	Secure Access Control
	(Remote) Attestation

	Use Cases: Signature Freshness
	Secure Time Distribution
	Status Request OCSP
	Vehicle-to-Vehicle Communication
	Sensor Data Transmission

	Use Cases: Key Pair Generation
	Key Generation on Device
	Key Generation with PKI and Deployed on Device

	Use Cases: Secure Channel Establishment
	Session-based Secure Channel
	Password-authenticated Key Establishment

	Use Cases: Distributed Data Access
	Delegated Access Control
	Secure Logging

	D1.2 - Requirements on Post Quantum Schemes
	Efficiency and Resources Footprint
	Resilience
	Ease of Implementation
	Physical Attacks
	Additional Remarks

	D1.3 - Requirements on Hardware Platforms
	Consideration Aspects
	Hardware Crypto(graphic) Agility
	Hardware Platforms
	Microcontroller Units (MCU) and Central Processing Units (CPU)
	Some Architectural Considerations
	Field Programmable Gate Arrays (FPGA)

	Softcores on FPGAs
	Connectivity
	Hardware Description Languages (HDL)
	Electronic Design Automation Tools
	Preliminary Conclusion on Hardware Selection

	Bibliography

