
Work Package 2, Deliverable 2.1:
Analysis and Optimization of
PQC Schemes

Version 1.0
Project Coordination Fraunhofer Institute for Secure Information Technology
Date of preparation May 4, 2023

Authors

• Continental AG:

• Maurice Heymann

• Elektrobit Automotive GmbH:

• Hannes Hennig

• Fraunhofer SIT:

• Norman Lahr

• Richard Petri

• Julian Wälde

• Hochschule RheinMain:

• Thorsten Knoll

• MTG AG:

• Evangelos Karatsiolis

• Johannes Roth

• Ruhr-Universität Bochum:

• Georg Land

• Jan Philipp Thoma

• Universität Regensburg:

• Juliane Krämer

• Michael Meyer

• Marcel Müller

Project Coordination
Norman Lahr
Fraunhofer Institute for Secure Information Technology
Advanced Cryptographic Engineering
Rheinstr. 75
D-64295 Darmstadt
Germany

Phone +49 6151 869100
Fax +49 6151 869224
Mail norman.lahr@sit.fraunhofer.de

mailto:norman.lahr@sit.fraunhofer.de

Contents

1 Executive summary 5

2 Introduction 7
2.1 Post-quantum cryptography . 7
2.2 Document goals and structure . 8

3 Analysis of PQC schemes 9
3.1 Overall criteria . 9
3.2 Use case criteria . 12
3.3 Code-based schemes . 15

3.3.1 KEM . 15
3.3.2 Suitability for QuantumRISC . 22

3.4 Isogeny-based schemes . 23
3.4.1 KEM . 23
3.4.2 KEX . 24
3.4.3 Suitability for QuantumRISC . 25

3.5 Lattice-based schemes . 26
3.5.1 Signature . 26
3.5.2 KEM . 29
3.5.3 Suitability for QuantumRISC . 38

3.6 Multivariate schemes . 39
3.6.1 Signature . 39
3.6.2 Suitability for QuantumRISC . 43

3.7 Symmetric-/Hash-based schemes . 44
3.7.1 Signature . 44
3.7.2 Suitability for QuantumRISC . 47

4 Performance optimizations 49
4.1 Parameters for SQISign . 49

5 Optimization of memory requirements and message sizes 53
5.1 Memory-constrained Classic McEliece 53
5.2 Memory-constrained verification of PQC signatures 56
5.3 Memory-constrained SPHINCS+ signing and verifying 58
5.4 On-the-fly computation of twiddle factors for NTT 59

6 Analysis of physical attacks 61
6.1 Safe-error attacks on SIKE and CSIDH 61
6.2 Disorientation fault attacks in CSIDH 63

Analysis and Optimization of
PQC Schemes

Contents 3

6.3 Zero-value attacks and correlation attacks on CSIDH and SIKE 65

Bibliography 69

4 Analysis and Optimization of
PQC Schemes
Contents

1 Executive summary

QuantumRISC is a project targeted at the secure and efficient use of quantum-resistant
cryptographic algorithms (post-quantum cryptography; PQC) for embedded devices. This
work reports on work package 2 (WP2) of the QuantumRISC project, focusing on the
analysis and improvements of quantum-resistant schemes, along with a study of their
suitability for the project.

First we develop several general criteria such as the (non-)existence of security concerns
or patent issues. We pick five relevant and representative use cases from WP1, and present
corresponding criteria for the suitability of schemes, e.g., concerning key sizes or running
times. Following this, we go through relevant PQC algorithms, mainly participants of the
second round of the PQC standardization effort by the National Institute of Standards and
Technology (NIST), and analyze their suitability for our use cases. We conclude this part
by an explicit choice of schemes that are considered in the following work packages of
QuantumRISC.

Furthermore, we discuss various optimization avenues for improving the applicability of
PQC schemes in our context of embedded devices. This includes performance optimizations,
in particular, we explore the choice of parameters for isogeny-based signature schemes,
which allow for a more efficient instantiation.

For several PQC schemes, we discussmemory-constrained implementations. This includes
many promising signature schemes, as well as the Classic McEliece key encapsulation. E.g.,
we show how PQC signatures can be verified in a memory-constrained environment by
streaming-in signatures.
In terms of robustness against physical attacks, we explore several attacks and their

countermeasures for isogeny-based schemes. This includes both active attacks, such
as fault injection attacks, and passive side-channel attacks. For embedded devices, the
security against physical attacks is an important prerequisite for the secure application of
cryptographic schemes.

Analysis and Optimization of
PQC Schemes

Executive summary 5

2 Introduction

2.1 Post-quantum cryptography

Public-key cryptography is one of the main building blocks required for cybersecurity. Its
basic protocols, public-key encryption, key agreement schemes, and digital signatures,
cover many usual cryptographic applications, and serve as a basis for more advanced
protocols. Widespread public-key schemes are given by RSA [82] for encryption and digital
signatures, and elliptic curve cryptography (ECC) [64, 73] for key agreement and digital
signatures. Since especially ECC allows for efficient implementations and uses very small
key sizes, it can be applied in many use cases, even if computations have to be run on
resource-constrained devices.

However, public-key schemes based on the discrete logarithm problem, such as RSA and
ECC, can be efficiently broken on a large-scale quantum computer via Shor’s algorithm [87].
Although such a quantum computer is not available yet, it is inevitable to analyze how a
transition to quantum-resistant alternatives for these schemes can be realized. In particular,
we aim for deploying post-quantum cryptography (PQC), that is, schemes that cannot be
broken using both classical and quantum computers. In order to fuel more research and
initiate the transition to PQC, the US-based National Institute of Standards and Technology
(NIST) started a PQC standardization process in 2016 [75]. Over three rounds, it led to an
announcement of schemes to be standardized in July 2022. The first PQC schemes to be
standardized are the Key Encapsulation Mechanism (KEM) CRYSTALS-Kyber [21], and
the signature schemes CRYSTALS-Dilithium [53], Falcon [81], and SPHINCS+ [59]. More
KEMs are expected to be standardized after a fourth round of evaluation. In particular,
the remaining candidates in the fourth round of KEM evaluations are BIKE[11], Classic
McEliece[6], HQC [2], and SIKE [62].1 Furthermore, a new round for submissions of
signature schemes will open in 2023. In addition to the NIST standardization effort, the
Internet Engineering Task Force (IETF) standardized the stateful hash-based schemes LMS
and XMSS (see Section 3.7), which are out of scope of the NIST process.

In contrast to classical schemes like RSA and ECC, PQC does not offer a single solution
that is applicable to all use cases. In particular, choosing a specific PQC scheme always
corresponds to a certain tradeoff between running times, key sizes, signature sizes, and
memory requirements. Thus, for each use case with its individual requirements, e.g.,
regarding resource-constrained devices, it is not trivial to select a suitable PQC scheme,
but a careful analysis for the best such tradeoff is necessary. Therefore, more research and
analysis of the available PQC schemes is necessary, in order to provide suitable schemes for
many use cases, and simplify the transition to PQC in practice.

1Note that recently the SIKE submission was broken by a series of attack papers, see Section 3.4.1.

Analysis and Optimization of
PQC Schemes
Introduction 7

2.2 Document goals and structure

Implementing PQC schemes for resource-constrained devices such as microcontrollers, like
small instances of a RISC-V processor, is at the heart of the QuantumRISC research project.
This report contains the following deliverable from work package WP2:

• D2.1 - Documentation on implemented PQC schemes and protocols.

The report focuses on analyzing existing PQC schemes for specific use cases discussed in
the report of QuantumRISC WP1 [78], mainly including participants of the NIST standard-
ization process, and presents optimizations and physical attacks. It therefore lays the theo-
retical foundations for further QuantumRISC work packages, in particular, for PQC software
libraries (WP3), hardware implementations and accelerators (WP4), hardware-software
co-design (WP5), and practical evaluation through a demonstrator for QuantumRISC use
cases (WP6).

Chapter 3 analyzes the relevant PQC schemes with respect to their performance profiles.
It picks a set of widespread use cases from [78], and analyzes the suitability of each scheme
for these specific applications. Furthermore, we discuss our choice of schemes we consider
for the usage in the following work packages of QuantumRISC.

The remainder of this report presents the contributions by the QuantumRISC consortium.
Their aim is to improve the applicability of PQC schemes to our use cases, which further
applies to implementing PQC primitives for embedded systems in general. This includes
performance and memory requirement optimizations, and an analysis of physical attacks
such as side-channel or fault injection attacks.
Chapter 4 presents work on performance optimizations of PQC schemes. In particular,

we analyze the choice of parameters for the isogeny-based signature scheme SQISign. In
order to be efficient, SQISign requires a prime number of a special shape as a system
parameter. Finding such primes translates to a number theoretical problem, and we give a
new approach to find suitable parameters.

Chapter 5 discusses reductions of the memory requirements of PQC schemes. We show
how PQC signatures can be verified on memory-constrained devices by streaming in signa-
tures. Similarly, we describe how signing and verifying in SPHINCS+, and running the key
encapsulation scheme Classic McEliece can be achieved with lower memory requirements,
using similar techniques. Furthermore, we show how the on-the-fly computation of twid-
dle factors in the Number Theoretic Transform (NTT) can be applied to reduce memory
requirements for RISC-V implementations.
Chapter 6 presents physical attacks on PQC schemes, such as side-channel and fault

attacks, and presents countermeasures to mitigate these. In particular, we focus on fault
attacks, zero-value and correlation attacks on the isogeny-based schemes SIKE and CSIDH.

8 Analysis and Optimization of
PQC Schemes
Introduction

3 Analysis of PQC schemes

In this section we analyze the most relevant quantum-resistant schemes, that is, most prac-
tical participants of the NIST standardization process, and a limited number of potentially
suitable schemes outside of the scope of NIST. For each scheme, we briefly describe the
main characteristics, and evaluate the most important features, such as key sizes, signature
sizes, and performance numbers.
In order to simplify comparisons between schemes, we assign ratings for most of these

features of each scheme by the means of colored symbols. A green triangle pointing
upwards

()
reflects that the corresponding feature appears to be suitable for practical

applications of the scheme. A yellow square
()

indicates worse suitability than a green
mark, while practical application may still be possible. A red triangle pointing downwards()

shows that the corresponding feature may prevent the scheme from being applicable in
many situations. In some instances, we will also use a neutral rating, which is represented
by a gray circle

()
.

Furthermore, we chose five use cases from WP1 that cover the most important crypto-
graphic applications in our context. For each scheme, we evaluate the suitability for these
five use cases and their requirements by assigning the respective symbols.
We emphasize that all of these ratings are not solely based on objective data, but are,

to a certain extent, also based on subjective assessment. In particular, red marks do not
indicate that the corresponding scheme is not usable for our specific use cases, but rather
that other schemes may be more suitable with respect to this feature.

3.1 Overall criteria

Common criteria. We present the following data and ratings for all schemes:

1. Year of publication of the scheme – In general, older schemes that did not suffer
a serious attack are considered to be conservative choices with respect to security.
However, the non-existence of a serious attack may also be due to limited cryptanalytic
research interest. Thus, we only present the year of publication, but refrain from
assigning ratings for this data.

2. Standardization – We indicate if schemes are already standardized or recommended,
e.g., by BSI or IETF, or to which round of the NIST standardization process they
advanced. Standardization and advancing to further rounds improves the rating:

: Standardized/recommended or participant of NIST Round 3

: Participant of NIST Round 2

: Participant of NIST Round 1

Analysis and Optimization of
PQC Schemes

Analysis of PQC schemes 9

3. Security – We indicate if the security assumptions of the corresponding scheme
are conservative and well-understood, if they are immature, or if there is doubt
about the security of the scheme or its proposed parameters. The ratings are rather
subjective and are based on discussions in the NIST PQC forum [77] and the NIST
status reports [4, 5]. We note that the highest rating is only assigned to schemes
whose security features are especially well-understood. Thus, a lower rating does
not indicate a priori that the respective scheme is not secure enough for practical
application.

: Conservative/well-understood security assumptions

: Immature security assumptions or debated parameterization

: Broken

4. Patent issues – Patents or potential patent infringements of schemes may significantly
hamper their practical application. Thus, we rate the schemes based on patents or
potential patent applicability. The ratings are rather subjective and are based on
discussions in the NIST PQC forum [77]. We note that even if no patents are known
for a scheme, there may still be applicable patents that the research community is
not aware of.

: No patents known

: Debates on patent applicability

: Known patents

The rating of these and the following features allows for a simple comparison between
different schemes. However, they cannot directly be used to qualify or disqualify schemes
for certain use cases, since they only represent the speed and sizes relative to other schemes.
We detail the suitability for specific use cases in Section 3.2.

Signature scheme criteria. For digital signature schemes we present running times of
key generation, signature generation, and signature verification in clock cycles, and sizes
of signatures, public keys and private keys in bytes. As for all categories, most of the data
was taken from official submissions to the NIST standardization process. Furthermore, we
indicate if there is a limited number of signatures that can be created for a single key pair.
For signature schemes, we use the following ratings, which are translated to the symbols
introduced above

(
, ,

)
in the subsequent sections.

1. Signature and Key Sizes in bytes.

Small Large

65 536B 262 144B

2. Key Generation, Signature, and Verification Time in cycles.

Fast Slow

1 000 000Cycles 20 000 000Cycles

10 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3. Maximal Number of Signatures per Key Pair.

: Unlimited

: Limited

Key Encapsulation Mechanism (KEM) criteria. For KEMs we present running times of
key generation, encapsulation, and decapsulation, and sizes for ciphertexts, public and
private keys as above. As before, ratings are only intended for a simple comparison between
different schemes. For KEMs, we use the following ratings.

1. Key and Ciphertext Sizes in bytes.

Small Large

65 536B 262 144B

2. Key Generation, Encapsulation, Decapsulation Time in cycles.

Fast Slow

1 000 000Cycles 20 000 000Cycles

Key Exchange (KEX) criteria. KEXs have the same criteria as KEMs, only substituting
encapsulation and decapsulation timings by the key exchange time. For KEXs, we use the
following ratings.

1. Secret Key, Public Key, in bytes.

Small Large

65 536B 262 144B

2. Key Generation and Exchange Time in cycles.

Fast Slow

1 000 000Cycles 20 000 000Cycles

Public Key Encryption (PKE) criteria. Most of the KEM schemes that participate in the
NIST PQC standardization process also offer a PKE variant. However, the key size and
performance profile is very similar to the respective KEM schemes. Thus, we refrain from
explicitly detailing their features in the following analysis.

Parameters. In order to ensure comparability of performance data and ratings, we only
consider parameters from the official NIST submissions of the schemes, where applicable,
for the following analysis in Sections 3.3 to 3.7. In particular, whenever available, we detail
the performance profile of each scheme for NIST security levels 1 and 3, which correspond
to the security of AES-128 and AES-192, respectively, and are most likely to be used in our
context of implementations on microcontrollers.

Analysis and Optimization of
PQC Schemes

Overall criteria 11

We note that some PQC schemes, for instance lattice-based proposals, offer a large num-
ber of parameters, which could potentially be adapted for special use cases. However, NIST
will standardize schemes along with concrete parameters. Hence, it is highly recommended
not to deviate from these parameters, in order not to introduce potential vulnerabilities.
Due to this, we refrain from adapting parameters to special use cases.

3.2 Use case criteria

For this section, we chose five specific use cases from the QuantumRISC WP1 report [78].
For each of the following PQC schemes, we rate the suitability for these use cases. That is,
we evaluate if the schemes potentially satisfy the use case requirements from [78]. We
note that the timing requirements from [78] are given in wall clock time instead of clock
cycles. Thus, we use the given cycle counts per scheme, and assume a 100 MHz processor
for obtaining an estimated wall clock timing. This also means that the rating presented
here only serves as a normalization, while concrete evaluations of the use case suitability
heavily depend on the respective hardware.

For each scheme, we present a table that rates the size and timing features with respect
to the respective use case requirements, where the same color and symbol encoding as
above is used. That is, a green triangle pointing upwards

()
means that the corresponding

requirement is met; a yellow square
()

indicates that the requirement is not satisfied,
but rather close to the stated goal; a red triangle pointing downwards

()
shows that the

corresponding feature may prevent the scheme from being applicable for this use case.
Again we note that these ratings may differ heavily if optimizations for schemes are found,
or different hardware is used. Thus, the ratings should only be seen as an indication as
to which schemes might be the best choice for the specific use cases. Nevertheless, we
consider the results for our final choice of PQC schemes for the QuantumRISC project.
The following use cases from [78] were selected:

• 3.2.1 – Secure Download

• 3.2.2 – Feature Activation

• 3.5.1 – Secure Access Control

• 3.7.1 – Key Generation on Device

• 3.8.1 – Session-based Secure Channel

We briefly recall the details and requirements for each of these use cases.

Use case 3.2.1 – Secure Download (Sec. DL). The secure download mechanism down-
loads software, and enforces that it is only flashed to an ECU if correctly authenticated.
That is, its aim is to prevents attackers from flashing manipulated software to an ECU. To
this end, secure download uses a digital signature scheme, attaches a signature to the
respective software, and only flashes it to the ECU if the signature is valid, and there-
fore grants authentication and non-repudiation. This use case usually features a backend

12 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

server that generates signatures, and a deeply embedded ECU that verifies signatures. The
requirements for signature schemes are detailed in Table 3.1.

Properties Backend ECU
Latency few minutes <1 s
Executions over product lifetime limited limited
Size of processed data ≤1MB: >1GB ≤1MB: >1GB
Physical accessibility restricted accessible
Computational power Server Deeply embedded
RAM availability Server Deeply embedded
Storage availability Server Deeply embedded
Key pairs ≤10 ≤10
Data dissipation one-to-many
Life time >5 years
Current security level ≤192 bits : ≤256 bits

Table 3.1: Requirements of the use case Secure Download [78, Table 3.4].

Use case 3.2.2 – Feature Activation (Feat. Ac.). The feature activation mechanism is
deployed for business models such as pay-on-demand services. In this scenario, a set of
functionalities is initially deployed in software on a device/ECU, but only a certain subset of
these functionalities is activated by default due to a policy set. A user can then request the
activation of additional features for a limited time period via the pay-on-demand service.

This means that in contrast to Use Case 3.2.1, the software for the requested functionali-
ties is already available on the device, and hence a software update is not required. Instead,
a certificate that is signed by an authorized backend entity usually enables the requested
policy change. That is, from a cryptographic point of view this use case involves a backend
server that generates signatures, and an embedded device that verifies signatures. The
requirements for signature schemes are detailed in Table 3.2.

Use case 3.5.1 – Secure Access Control (Sec. AC). This use case involves a sender,
usually a server backend, and a receiver, an automotive ECU. The aim is for the sender to
gain access to certain services of the ECU, such as access to data, or for flashing. In order to
ensure security, the sender must authenticate to the receiver before access can be granted.
This is done via a challenge response scheme, based on signatures or public key encryption.
In all these cases, the sender possesses a key pair, while the corresponding public key is
deployed to the receivers. If a sender requests to unlock a receiver, the receiver replies with
a challenge to the sender, which is either a message that has to be signed, or an encrypted
message that has to be decrypted. In both cases, the sender can only solve the challenge if
in possession of the corresponding private key. Thus, the sender replies to the challenge
with a signature or plaintext. In the case of successful verification, the receiver then grants
access to the sender.
In our context this means that we can use signature schemes, KEMs, or KEXs. The

requirements are detailed in Table 3.3.

Analysis and Optimization of
PQC Schemes

Use case criteria 13

Properties Backend ECU
Latency <1 s <1 s
Executions over product lifetime unlimited unlimited
Size of processed data ≤1MB ≤1MB
Physical accessibility restricted accessible
Computational power Server Embedded
RAM availability Server Embedded
Storage availability Server Embedded
Key Pairs ≤10 ≤10
Data dissipation one-to-many
Life time <1 year
Current security level ≤128 bits

Table 3.2: Requirements of the use case Feature Activation [78, Table 3.5].

Use case 3.7.1 – Key Generation on Device (KeyGen oD). In this use case the embedded
device creates a fresh key pair, consisting of a private and public key. It then sends the
public key to the certification authority (CA), which has to integrate it into the chain of trust
of the corresponding public key infrastructure. Prior to this, the CA checks if the public
key is well-formed, and potentially issues a proof-of-possession request to the generating
device. This means that it has to answer a signing or decryption challenge that proofs its
possession of the corresponding private key. In the case of success, the CA accepts the new
public key, signs it and integrates it to the chain of trust. The generating device completes
the protocol by verifying the signature issued by the CA.
In our context this means that all sorts of schemes, namely KEMs, KEXs, and signature

schemes, can be considered for this use case. The generation of a new key pair is the main
operation performed by the embedded device, and therefore the most important criterion
for this use case. The requirements are detailed in Table 3.4.

Use case 3.8.1 – Session-based Secure Channel (Ses. SC). The session-based secure
channel use case involves a client, usually represented by an embedded device, and a
server backend. They want to set up a secure channel to ensure confidential and authentic
communication. This channel has to be established over an untrusted communication
medium. Depending on the specific security requirements, this can either be achieved
through the Transport Layer Security (TLS) protocol, or a Virtual Private Network (VPN).
From a cryptographic point of view, this use case uses symmetric encryption, while

the respective symmetric key has to be established through a KEM or KEX scheme. The
requirements for KEMs and KEXs are detailed in Table 3.5.

14 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

Properties Tool ECU
Latency <1 s <1 s
Executions over product lifetime unlimited unlimited
Size of processed data ≤32B: ≤1MB ≤32B: ≤1MB
Physical accessibility restricted accessible
Computational power Server Deep. Embedded :

Embedded
RAM availability Server Deep. Embedded :

Embedded
Storage availability Server Deep. Embedded :

Embedded
Key pairs ≤10 : ≤1.000.000 ≤10 : ≤1.000.000
Data dissipation many-to-many
Life time >5 years
Current security level ≤80 bits : ≤128 bits

Table 3.3: Requirements of the use case Secure Access Control [78, Table 3.16].

3.3 Code-based schemes

3.3.1 KEM

BIKE

Publication: 2017
Standardization: NIST Round 4

Security: immature
Patents: none known

Meta criteria

Public Key Size: 1541B

Secret Key Size: 281B

Ciphertext Size: 1573B

Key Generation Time: 600 000Cycles

Encapsulation Time: 220 000Cycles

Decapsulation Time: 2 220 000Cycles

(a) Level 1

Public Key Size: 3083B

Secret Key Size: 419B

Ciphertext Size: 3115B

Key Generation Time: 1 780 000Cycles
Encapsulation Time: 465 000Cycles

Decapsulation Time: 6 610 000Cycles

(b) Level 3

Figure 3.1: Criteria for BIKE from [10].

Analysis and Optimization of
PQC Schemes

Code-based schemes 15

Properties Device CA
Latency <1 s <1 s
Executions over product lifetime limited limited
Size of processed data ≤16KB ≤16KB
Physical accessibility untrusted trusted
Computational power Embedded Server
RAM availability Embedded Server
Storage availability Embedded Server
Key pairs ≤10 >1.000.000
Data dissipation one-to-one
Life time >5 years
Current security level ≤128 bits

Table 3.4: Requirements of the use case Key Generation on Device [78, Table 3.24].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) Level 1

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) Level 3

Figure 3.2: Use case suitability for BIKE.

BIKE is a structured code-based Key Encapsulation Mechanism. It offers a balanced
performance and key sizes for general use, although it has a slightly slower decapsulation
and key generation than structured lattice-based schemes. NIST regards BIKE as a useful
fallback scheme in case of cryptanalytic progress on structured lattice based schemes, due
to BIKE’s well-understood and stable attack complexity [4].

However, NIST reports on doubts about side-channel protection and the CCA security of
BIKE, which thus requires further research.

16 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

Classic McEliece

Publication: 1978
Standardization: BSI Recommendation, NIST Round 4

Security: well-understood
Patents: none known

Meta criteria

Public Key Size: 261 120B

Secret Key Size: 6452B

Ciphertext Size: 128B

Key Generation Time: 58 034 411Cycles
Encapsulation Time: 44 350Cycles

Decapsulation Time: 134 745Cycles

(a) McEliece348864 (L. 1)

Public Key Size: 524 160B

Secret Key Size: 13 608B

Ciphertext Size: 188B

Key Generation Time: 215 785 433Cycles
Encapsulation Time: 117 782Cycles

Decapsulation Time: 271 694Cycles

(b) McEliece460896 (L. 3)

Figure 3.3: Criteria for Classical McEliece from [6].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) McEliece348864 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) McEliece460896 (L. 3)

Figure 3.4: Use case suitability for Classical McEliece.

Classic McEliece is a code-based Key EncapsulationMechanism that is based on the McEliece
scheme from 1978 using Goppa codes [71]. It is the oldest among the proposed PQC
schemes and its security has not been highly impacted through research since its publication.
Due to this, NIST considers Classic McEliece to be a stable and conservative choice for
suitable applications. Similarly to FrodoKEM (Section 3.5.2), Classic McEliece has also
been recommended by the BSI [65].

However, Classic McEliece features very large public keys, which may prevent its usage
for many applications. In contrast, its ciphertext sizes and encapsulation and decapsulation
performance are competitive with other PQC schemes.
We further note that the NIST Round 2 candidate NTS-KEM merged with the Classic

McEliece submission for NIST Round 3, and is thus not listed separately in this document.

Analysis and Optimization of
PQC Schemes

Code-based schemes 17

HQC

Publication: 2017
Standardization: NIST Round 4

Security: well-understood
Patents: none known

Meta criteria

Public Key Size: 2249B

Secret Key Size: 40B

Ciphertext Size: 4481B

Key Generation Time: 83 000Cycles

Encapsulation Time: 197 000Cycles
Decapsulation Time: 349 000Cycles

(a) HQC-128 (L. 1)

Public Key Size: 4522B

Secret Key Size: 40B

Ciphertext Size: 9026B

Key Generation Time: 200 000Cycles
Encapsulation Time: 456 000Cycles
Decapsulation Time: 740 000Cycles

(b) HQC-192 (L. 3)

Figure 3.5: Criteria for HQC from [1].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) HQC-128 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) HQC-192 (L. 3)

Figure 3.6: Use case suitability for HQC.

HQC is a code-based Key Encapsulation Mechanism based on the decisional quasi-cyclic syn-
drome decoding (QCSD) with parity problem. In comparison to the code-based competitor
BIKE, HQC features larger public key and ciphertext sizes, but has faster key generation and
decapsulation. Nevertheless, as for BIKE, HQC is outperformed by structured lattice-based
schemes.

NIST notes that the HQC submission features a thorough security analysis, which favored
its consideration for NIST Round 4 [4, 5].

18 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

LEDAcrypt

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Public Key Size: 2928B

Secret Key Size: 50B

Ciphertext Size: 2952B

Key Generation Time: 4 457 600Cycles
Encapsulation Time: 243 200Cycles

Decapsulation Time: 1 795 200Cycles

(a) IND-CCA2 LEDAcrypt-KEM (L. 1)

Public Key Size: 5104B

Secret Key Size: 66B

Ciphertext Size: 5136B

Key Generation Time: 11 132 800Cycles
Encapsulation Time: 620 800Cycles

Decapsulation Time: 5 411 200Cycles

(b) IND-CCA2 LEDAcrypt-KEM (L. 3)

Figure 3.7: Criteria for LEDAcrypt KEM from [14].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) IND-CCA2 LEDAcrypt-KEM (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) IND-CCA2 LEDAcrypt-KEM (L. 3)

Figure 3.8: Use case suitability for LEDAcrypt KEM.

LEDAcrypt [15] is a structured code-based Key Encapsulation Mechanism that uses a similar
construction as BIKE. However, its differing design choices allowed for an attack on the
Round 2 submission, which identified a large class of weak keys (see [4]).
As a countermeasure, the LEDAcrypt team proposed several changes that made the

scheme very similar to BIKE. This, combined with the large differences to the initial
proposal of LEDAcrypt, led NIST to not considering LEDAcrypt for Round 3 [4].

Analysis and Optimization of
PQC Schemes

Code-based schemes 19

ROLLO

Publication: 2018
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Public Key Size: 1941B

Secret Key Size: 40B

Ciphertext Size: 2089B

Key Generation Time: 3 690 000Cycles
Encapsulation Time: 331 000Cycles

Decapsulation Time: 1 195 000Cycles

(a) ROLLO-II-128 (L. 1)

Public Key Size: 2341B

Secret Key Size: 40B

Ciphertext Size: 2469B

Key Generation Time: 3 689 000Cycles
Encapsulation Time: 334 000Cycles

Decapsulation Time: 1 258 000Cycles

(b) ROLLO-II-192 (L. 3)

Figure 3.9: Criteria for ROLLO-II from [12].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) ROLLO-II-128 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) ROLLO-II-192 (L. 3)

Figure 3.10: Criteria for ROLLO-I.

ROLLO is a code-based Key Encapsulation Mechanism that resulted from the merge of the
three NIST Round 1 candidates LAKE, LOCKER, and Ouroboros-R. Its security is based on
the rank syndrome decoding (RSD) problem. ROLLO was subject to an algebraic attack
that significantly reduced the security of the proposed parameter sets. In order to mitigate
this attack, larger parameter sets have been proposed [12].
However, NIST states that the security analysis of ROLLO requires more research and

time to mature [4]. Thus, ROLLO did not advance to NIST Round 3.

20 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

RQC

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Public Key Size: 1834B

Secret Key Size: 40B

Ciphertext Size: 3652B

Key Generation Time: 370 000Cycles

Encapsulation Time: 530 000Cycles

Decapsulation Time: 2 580 000Cycles

(a) RQC-128 (L. 1)

Public Key Size: 2853B

Secret Key Size: 40B

Ciphertext Size: 5690B

Key Generation Time: 760 000Cycles

Encapsulation Time: 1 160 000Cycles
Decapsulation Time: 5 650 000Cycles

(b) RQC-192 (L. 3)

Figure 3.11: Criteria for RQC from [3].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) RQC-128 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) RQC-192 (L. 3)

Figure 3.12: Use case suitability for RQC.

RQC is a code-based Key Encapsulation Mechanism based on the rank syndrome decoding
(RSD) problem. Similar to ROLLO, RQC was subject to an algebraic attack that broke all
proposed parameter sets (see [4]).
Although larger parameter sets were proposed, and performance and key sizes remain

competitive, RQC did not advance to NIST Round 3. Analogously to ROLLO, more research
on the security of rank-based cryptography is required for potential practical applications
of RQC.

Analysis and Optimization of
PQC Schemes

Code-based schemes 21

3.3.2 Suitability for QuantumRISC

Code-based KEMs can be summarized as being relatively efficient, but requiring rather
large public keys or ciphertexts. This is especially true for Classic McEliece, which is
considered to be a conservative option in terms of security due to its long standing history
without being majorly affected by new attacks. However, the large public keys of Classic
McEliece may be problematic for its usage on memory-constrained devices. Alternatives
like BIKE or HQC require smaller public keys, but feature slower running times. The fourth
round of the NIST PQC standardization process furthermore includes these three schemes,
i.e., BIKE, Classic McEliece, and HQC.
For QuantumRISC, we mainly focus on Classic McEliece, due to its high likeliness of

being standardized and the existing BSI recommendation for its usage.

22 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.4 Isogeny-based schemes

3.4.1 KEM

SIKE

Publication: 2011
Standardization: NIST Round 4

Security: broken
Patents: none known

Meta criteria

Public Key Size: 330B

Secret Key Size: 374B

Ciphertext Size: 346B

Key Generation Time: 5 927 000Cycles

Encapsulation Time: 9 681 000Cycles

Decapsulation Time: 10 343 000Cycles

(a) SIKEp434 (L. 1)

Public Key Size: 462B

Secret Key Size: 524B

Ciphertext Size: 486B

Key Generation Time: 14 890 000Cycles
Encapsulation Time: 27 254 000Cycles
Decapsulation Time: 27 445 000Cycles

(b) SIKEp610 (L. 3)

Figure 3.13: Criteria for SIKE from [61].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) SIKEp434 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) SIKEp610 (L. 3)

Figure 3.14: Use case suitability for SIKE.

SIKE is an isogeny-based Key Encapsulation Mechanism, based on the key exchange
scheme SIDH [60]. Its security is based on the problem of finding an isogeny between two
supersingular elliptic curves, which is a relatively young security assumption. SIKE has the
smallest key and ciphertext sizes among all NIST candidates, but is more than an order of
magnitude slower than most other KEMs.

SIKE further offers an optional key compression, where public key and ciphertext sizes
can be compressed by roughly 40% at the cost of a performance overhead of factor 1.5-2,
see [61].
As a promising scheme for applications that require small keys and ciphertexts, SIKE

advanced to NIST Round 4 [5]. However, shortly after SIKE moved to NIST Round 4, a
series of attack papers led to a polynomial time attack against SIKE [31, 70, 83]. Thus,
SIKE as specified in [61] is broken.

Analysis and Optimization of
PQC Schemes

Isogeny-based schemes 23

3.4.2 KEX

CSIDH

Publication: 2018
Standardization: no data

Security: debated
Patents: none known

Meta criteria

Public Key Size: 64B

Secret Key Size: 32B

Key Pair Size: 96B

Key Generation Time: 89 110 000Cycles
Key Exchange Time: 93 230 000Cycles

(a) CSIDH-512 (L. 1)

Public Key Size: 128B

Secret Key Size: 64B

Key Pair Size: 192B

Key Generation Time: 469 520 000Cycles
Key Exchange Time: 511 190 000Cycles

(b) CSIDH-1024 (L. 3)

Figure 3.15: Criteria for CSIDH from [16].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ke
y
Pa

ir

Ke
y
G
en

.

Ke
y
Ex

.

Ep
he

m
er
al

Sec. AC
KeyGen oD

Ses. SC

(a) CSIDH-512 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ke
y
Pa

ir

Ke
y
G
en

.

Ke
y
Ex

.

Ep
he

m
er
al

Sec. AC
KeyGen oD

Ses. SC

(b) CSIDH-1024 (L. 3)

Figure 3.16: Use case suitability for CSIDH.

CSIDH [32] is an isogeny-based Key Exchange. It was published in 2018, and thus does
not participate in the NIST standardization process, which started in 2017. CSIDH is a
non-interactive scheme, which makes it unique among the PQC schemes, and allows for
using it as a potential drop-in replacement for Diffie-Hellman key exchange schemes. The
public key sizes are smaller than in SIKE, while the performance is an order of magnitude
slower.

Similar to SIKE, the security of CSIDH is based on an isogeny finding problem. However,
unlike SIKE, CSIDH possesses a commutative structure, which allows for the application of
Kuperberg’s subexponential quantum algorithm [66]. The exact implications of this on the
parameter choices are heavily debated. The parameter sets presented in Figure 3.15 are
aggressive choices, which may need to be scaled up in the future. Note that the mentioned
attacks against SIKE do not apply to CSIDH.

24 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.4.3 Suitability for QuantumRISC

All isogeny-based schemes show a clear trend: While their key and ciphertext sizes are
very small and thus a perfect fit for all of our use cases, the running times seem to be too
slow for our applications. However, isogeny-based cryptography is the youngest among the
known PQC families, and thus may receive further attention with regards to optimizations
in its performance. Furthermore, in many situations larger keys may lead to bandwidth
latency, which additionally favors isogeny-based schemes.
While recently attacks that run in polynomial time against SIKE and variants like

SIDH [60] or B-SIDH [40] were found, they do not affect the security of CSIDH or the very
recent isogeny-based signature scheme SQISign [48]. Thus, isogeny-based schemes remain
an interesting option for practical applications of PQC. In particular, SQISign might be
considered in future rounds of the NIST standardization process. It features the smallest
combined public key and signature sizes among PQC signatures, yet suffers from relatively
slow running times, partly due to the involved choice of parameters [46, 41, 24].

Analysis and Optimization of
PQC Schemes

Isogeny-based schemes 25

3.5 Lattice-based schemes

3.5.1 Signature

CRYSTALS-Dilithium

Publication: 2017
Standardization: NIST standardization choice

Security: immature
Patents: debated

Meta criteria

Number of Signatures: ∞#
Public Key Size: 1312B

Secret Key Size: 96B

Signature Size: 2420B

Key Generation Time: 124 031Cycles
Signing Time: 333 013Cycles

Verification Time: 118 412Cycles

(a) Dilithium2 (L. 2)

Number of Signatures: ∞#
Public Key Size: 1952B

Secret Key Size: 96B

Signature Size: 3293B

Key Generation Time: 256 403Cycles
Signing Time: 529 106Cycles

Verification Time: 179 424Cycles

(b) Dilithium3 (L. 3)

Figure 3.17: Criteria for CRYSTALS-Dilithium from [42].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) Dilithium2 (L. 2)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) Dilithium3 (L. 3)

Figure 3.18: Use case suitability for CRYSTALS-Dilithium.

CRYSTALS-Dilithium [53] is a lattice-based signature scheme based on lattice problems
over module lattices. The hard underlying problems are module learning with errors
(MLWE) and module short integer solutions (MSIS). Signature and key sizes, and the
performance of Dilithium are rather balanced, which opens it to a wide area of potential
applications. In addition to the instantiations from Figure 3.17, Dilithium includes the
variant Dilithium-AES that uses hardware supported AES-256 in counter mode instead of
SHAKE. This improves the cycle counts by 25-40% compared to Figure 3.17 [42].

However, Dilithium relies on structured lattices, for which security analyses and parame-
ter choices would benefit from further research [4].
Due to its usability as general purpose signature scheme, NIST decided to standardize

Dilithium after Round 3 [5].

26 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

FALCON

Publication: 2017
Standardization: NIST standardization choice

Security: immature
Patents: debated

Meta criteria

Number of Signatures: ∞#
Public Key Size: 897B

Secret Key Size: 768B

Signature Size: 666B

Key Generation Time: 19 458 000Cycles
Signing Time: 386 678Cycles

Verification Time: 82 340Cycles

(a) Falcon-512 (L. 1)

Number of Signatures: ∞#
Public Key Size: 1793B

Secret Key Size: 1280B

Signature Size: 1280B

Key Generation Time: 63 135 000Cycles
Signing Time: 789 564Cycles

Verification Time: 168 498Cycles

(b) Falcon-1024 (L. 5)

Figure 3.19: Criteria for Falcon from [81].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) Falcon-512 (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) Falcon-1024 (L. 5)

Figure 3.20: Use case suitability for Falcon.

Falcon [81] is a lattice-based signature scheme based on the short integer solutions (SIS)
problem over NTRU lattices. In terms of signature and key sizes, and performance, Falcon
is comparable to Dilithium, while Falcon is harder to implement due to its usage of floating-
point arithmetic.
Similar to Dilithium, the security of Falcon would benefit from further research due to

its rather low CoreSVP security strength [4].
Due to its slightly better performance profile, NIST decided to standardize Falcon after

Round 3. It is recommended for situations where the performance of Dilithium is not
sufficient [5].

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 27

qTESLA

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: debated

Meta criteria

Number of Signatures: ∞#
Public Key Size: 14 880B

Secret Key Size: 5224B

Signature Size: 2592B

Key Generation Time: 2 358 600Cycles
Signing Time: 2 299 000Cycles

Verification Time: 814 300Cycles

(a) qTESLA-p-I (L. 1)

Number of Signatures: ∞#
Public Key Size: 38 432B

Secret Key Size: 12 392B

Signature Size: 5664B

Key Generation Time: 13 151 400Cycles
Signing Time: 5 212 300Cycles

Verification Time: 2 102 300Cycles

(b) qTESLA-p-III (L. 3)

Figure 3.21: Criteria for qTESLA from [20].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) qTESLA-p-I (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) qTESLA-p-III (L. 3)

Figure 3.22: Use case suitability for qTESLA.

qTESLA is a lattice-based signature scheme based on structured lattice assumptions. In
NIST Round 2, 10 of the initially 12 parameter sets were retracted due to doubts about
their security assumptions. Since the remaining two parameter sets (see Figure 3.21)
gain no advantage over Dilithium or Falcon with regards to signature sizes, key sizes, or
performance, qTESLA did not advance to NIST Round 3 [4].

28 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.5.2 KEM

CRYSTALS-Kyber

Publication: 2017
Standardization: NIST standardization choice

Security: immature
Patents: debated

Meta criteria

Public Key Size: 800B

Secret Key Size: 1632B

Ciphertext Size: 768B

Key Generation Time: 33 856Cycles
Encapsulation Time: 45 200Cycles
Decapsulation Time: 34 572Cycles

(a) Kyber-512 (L. 1)

Public Key Size: 1184B

Secret Key Size: 2400B

Ciphertext Size: 1088B

Key Generation Time: 52 732Cycles
Encapsulation Time: 67 624Cycles
Decapsulation Time: 53 156Cycles

(b) Kyber-768 (L. 3)

Figure 3.23: Criteria for CRYSTALS-Kyber from [43].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) Kyber-512 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) Kyber-1024 (L. 3)

Figure 3.24: Use case suitability for CRYSTALS-Kyber.

CRYSTALS-Kyber [21] is a lattice-based Key Encapsulation Mechanism that shares a com-
mon framework with the CRYSTALS-Dilithium signature scheme. Thus, it relies on the
hardness of the module learning with errors (MLWE) problem. In comparison to other PQC
schemes, Kyber offers a relatively fast performance and small key sizes, which potentially
makes it a suitable candidate for many practical applications. In addition to the instantia-
tions from Figure 3.23, the Kyber Round 3 submission includes the variant Kyber-90s that
uses hardware supported AES-256 in counter mode instead of SHAKE. This improves the
presented cycle counts by roughly 40% compared to Figure 3.23.

As for Dilithium, the relatively low CoreSVP security strength may present a concern on
the security of Kyber [4]. Thus, more research on this topic is required.

NIST decided to standardize Kyber after Round 3 because it has confidence in assumptions
based on the MLWE problem, the specification of the scheme provided an extended security
analysis, and the performance of Kyber is very good [5].

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 29

FrodoKEM

Publication: 2016
Standardization: NIST Round 3 (alternate candidate), BSI Recommendation

Security: well-understood
Patents: none known

Meta criteria

Public Key Size: 9616B

Secret Key Size: 19 888B

Ciphertext Size: 9720B

Key Generation Time: 1 387 000Cycles
Encapsulation Time: 1 634 000Cycles
Decapsulation Time: 1 531 000Cycles

(a) FrodoKEM-640-AES (L. 1)

Public Key Size: 15 632B

Secret Key Size: 31 296B

Ciphertext Size: 15 744B

Key Generation Time: 2 846 000Cycles
Encapsulation Time: 3 047 000Cycles
Decapsulation Time: 2 894 000Cycles

(b) FrodoKEM-976-AES (L. 3)

Figure 3.25: Criteria for FrodoKEM from [74].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) FrodoKEM-640-AES (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) FrodoKEM-976-AES (L. 3)

Figure 3.26: Use case suitability for FrodoKEM.

FrodoKEM [22] is a lattice-based Key Encapsulation Mechanism that relies on the hardness
of the plain LWE problem. Thus, among the lattice-based NIST candidates, FrodoKEM
uses the least amount of structure in its lattices, which means that is it less likely to be
susceptible to algebraic attacks. However, this potential security advantage leads to worse
performance and larger key sizes compared to other lattice-based schemes.
In addition to advancing to NIST Round 3 as alternate candidate, FrodoKEM has been

recommended by the BSI [65]. However, among the lattice-based KEMs, NIST decided to
only standardize Kyber after Round 3. Due to NIST’s endeavor to not only rely on lattice
problems, other lattice-based KEMs like FrodoKEM did not proceed to Round 4 [5].

30 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

LAC

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: debated

Meta criteria

Public Key Size: 544B

Secret Key Size: 1056B

Ciphertext Size: 712B

Key Generation Time: 59 584Cycles

Encapsulation Time: 89 055Cycles

Decapsulation Time: 103 229Cycles

(a) LAC.CCA-128 (L. 1)

Public Key Size: 1056B

Secret Key Size: 2080B

Ciphertext Size: 1188B

Key Generation Time: 119 246Cycles
Encapsulation Time: 137 653Cycles
Decapsulation Time: 224 249Cycles

(b) LAC.CCA-192 (L. 3)

Figure 3.27: Criteria for LAC.CCA from [68].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) LAC.CCA-128 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) LAC.CCA-192 (L. 3)

Figure 3.28: Use case suitability for LAC.CCA.

LAC [69] is a lattice-based Key Encapsulation Mechanism based on the RLWE problem. Its
design features error-correcting codes that can correct decryption failures, which means
that a higher decryption failure rate can be tolerated. Although this feature enables very
efficient performance, it allowed for several attacks that reduced the security of LAC during
NIST Round 1 [4]. LAC was modified to mitigate these attacks, yet some more security
issues were discovered in the NIST Round 2 submission. Thus, NIST decided not to consider
LAC for Round 3 since much more research would be required to gain confidence in the
security of the scheme.

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 31

NewHope

Publication: 2015
Standardization: NIST Round 2

Security: immature
Patents: debated

Meta criteria

Public Key Size: 928B

Secret Key Size: 1888B

Ciphertext Size: 1120B

Key Generation Time: 68 080Cycles

Encapsulation Time: 109 836Cycles
Decapsulation Time: 114 176Cycles

(a) NewHope512-CCA-KEM (L. 1)

Public Key Size: 1824B

Secret Key Size: 3680B

Ciphertext Size: 2208B

Key Generation Time: 129 670Cycles
Encapsulation Time: 210 092Cycles
Decapsulation Time: 220 864Cycles

(b) NewHope1024-CCA-KEM (L. 5)

Figure 3.29: Criteria for NewHope from [80].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) NewHope512

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) NewHope1024

Figure 3.30: Use case suitability for NewHope.

NewHope [9] is a lattice-based Key Encapsulation Mechanism based on the RLWE problem.
Its performance profile and key sizes are competitive to other lattice-based KEMs, where
the performance benefits from the structure of the lattices used in NewHope.

However, the fact that RLWE schemes are the most structured among the PQC candidates
may lead to security concerns. Due to this, NIST developed a preference for MLWE schemes
with less structure, since NewHope does not offer a significant advantage over schemes
like DILITHIUM-Kyber [4]. Thus, NewHope was not considered for NIST Round 3.

32 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

NTRU

Publication: 1996
Standardization: NIST Round 3

Security: immature
Patents: expired

Meta criteria

Public Key Size: 931B

Secret Key Size: 1235B

Ciphertext Size: 931B

Key Generation Time: 309 216Cycles
Encapsulation Time: 83 519Cycles

Decapsulation Time: 59 729Cycles

(a) ntruhps2048677 (L. 1)

Public Key Size: 1230B

Secret Key Size: 1592B

Ciphertext Size: 1230B

Key Generation Time: 431 667Cycles
Encapsulation Time: 98 809Cycles

Decapsulation Time: 75 384Cycles

(b) ntruhps4096821 (L.3)

Figure 3.31: Criteria for NTRU from [35].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) ntruhps2048677 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) ntruhps4096821 (L. 3)

Figure 3.32: Use case suitability for NTRU.

NTRU [58] is a lattice-based Key Encapsulation Mechanism that uses structured lattices,
but differs from the RLWE or MLWE assumptions of other lattice-based candidates. It
offers small key sizes and an efficient performance, yet it is outperformed by schemes like
CRYSTALS-Kyber or SABER.

The long history of NTRU means that new algebraic attacks on its structured lattices and
new patent claims are rather unlikely. However, parameters for the concrete instantiations
of NTRU are based on two different cost metrics. It remains to be shown which cost metric
is suitable in practice, and how they translate to the cost metrics of other lattice-based
schemes. The numbers of Figure 3.31 refer to security levels in the more conservative cost
metric.

Similar to FrodoKEM, NTRU did not proceed to NIST Round 4. However, NIST states that
if potential patent problems with respect to Kyber cannot be resolved, it may standardize
NTRU instead [5].

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 33

NTRU Prime

Publication: 2016
Standardization: NIST Round 3 (alternate candidate)

Security: immature
Patents: none known

(a) Meta criteria

Public Key Size: 994B

Secret Key Size: 1518B

Ciphertext Size: 897B

Key Generation Time: 716 209Cycles
Encapsulation Time: 44 155Cycles

Decapsulation Time: 55 778Cycles

(b) sntrup653 (L. 1)

Public Key Size: 1505B

Secret Key Size: 2254B

Ciphertext Size: 1349B

Key Generation Time: 1 523 540Cycles
Encapsulation Time: 62 704Cycles

Decapsulation Time: 80 654Cycles

(c) sntrup953 (L. 3/4)

Figure 3.33: Criteria for NTRU Prime.

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) sntrup653 (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) sntrup953 (L. 3/4)

Figure 3.34: Use case suitability for NTRU Prime.

NTRU Prime [17] contains two lattice-based KEMs. Streamlined NTRU Prime is based on
NTRU with a quotient structure in public keys, while NTRU LPRime is based on RLWE with
a product structure in public keys. A central difference between NTRU Prime and other
structured lattice-based schemes is the usage of a different ring structure, in particular, the
abandonment of cyclotomic rings. This variation may be of special interest if attacks that
specifically require the structure of cyclotomic rings are found.

Both KEM variants of NTRU Prime offer efficient performance and key sizes, which are
competitive with other lattice-based KEMs. The data presented in Figure 3.33 refers to
Streamlined NTRU Prime. In comparison to this, NTRU LPRime provides much faster key
generation (roughly 20-40 times faster), slightly slower encapsulation and decapsulation
(roughly 50% slower), and comparative key sizes.

We note that NIST voiced doubt regarding some of the security categories assigned to
the NTRU Prime parameter sets [4].
Similar to FrodoKEM and NTRU, NTRU Prime did not proceed to NIST Round 4 [5].

34 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

Round5 - KEM

Publication: 2018
Standardization: NIST Round 2

Security: immature
Patents: unclear

Meta criteria

Public Key Size: 676B

Secret Key Size: 16B

Ciphertext Size: 740B

Key Generation Time: 54 000Cycles
Encapsulation Time: 67 000Cycles
Decapsulation Time: 86 000Cycles

(a) R5ND_1CCA_0d (L. 1)

Public Key Size: 983B

Secret Key Size: 32B

Ciphertext Size: 1103B

Key Generation Time: 82 000Cycles

Encapsulation Time: 106 000Cycles
Decapsulation Time: 133 000Cycles

(b) R5ND_3CCA_0d (L. 3)

Figure 3.35: Criteria for Round5-KEM from [54].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) R5ND_1CCA_0d (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) R5ND_3CCA_0d (L. 3)

Figure 3.36: Use case suitability for Round5-KEM.

Round5 [13] is a lattice-based Key Encapsulation Mechanism based on the learning with
rounding problem, and also features a PKE variant. It was formed through a merge of the
NIST Round 1 candidates Round2 and Hila5. Round5 offers a very efficient performance as
well as small key sizes, which are competitive to schemes like CRYSTALS-Kyber or SABER.

However, concerns were raised about the security of the scheme, which led to updates
to the proposed parameters. Nevertheless, NIST reports that the rather complicated
specification and a lack of confidence in some building blocks of Round5 resulted in not
considering the scheme for NIST Round 3 [4]. Furthermore, the Round5 submission does
not contain a royalty-free license.

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 35

SABER

Publication: 2017
Standardization: NIST Round 3

Security: immature
Patents: debated

Meta criteria

Public Key Size: 672B

Secret Key Size: 1568B

Ciphertext Size: 736B

Key Generation Time: 45 232Cycles
Encapsulation Time: 62 236Cycles
Decapsulation Time: 62 624Cycles

(a) LightSABER (L. 1)

Public Key Size: 992B

Secret Key Size: 2304B

Ciphertext Size: 1088B

Key Generation Time: 80 340Cycles

Encapsulation Time: 103 204Cycles
Decapsulation Time: 103 092Cycles

(b) SABER (L. 3)

Figure 3.37: Criteria for SABER from [44].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) LightSABER (L. 1)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) SABER (L. 3)

Figure 3.38: Use case suitability for SABER.

SABER [45] is a lattice-based Key Encapsulation Mechanism based on the Module Learning
With Rounding (MLWR) problem, which is a variant of MLWE. NIST states that a mild
concern lies in the fact that reduction from MLWR to MLWE are not applicable to SABER [4].
SABER is among the fastest lattice-based KEMs with competitive key sizes, and hence is
comparable to CRYSTALS-Kyber or Round5.

It should be noted that the applicability of a known patent to SABER is currently heavily
debated on the NIST PQC forum [77]. Thus, this patent could potentially hamper the
adaption of SABER in practice.
Similar to FrodoKEM and NTRU, SABER did not proceed to NIST Round 4 [5], due to

NIST’s preference for CRYSTALS-Kyber.

36 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

Three Bears

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Public Key Size: 804B

Secret Key Size: 40B

Ciphertext Size: 917B

Key Generation Time: 41 000Cycles
Encapsulation Time: 62 000Cycles
Decapsulation Time: 28 000Cycles

(a) BabyBear (L. 2)

Public Key Size: 1194B

Secret Key Size: 40B

Ciphertext Size: 1307B

Key Generation Time: 84 000Cycles

Encapsulation Time: 103 000Cycles
Decapsulation Time: 34 000Cycles

(b) MamaBear (L. 4)

Figure 3.39: Criteria for Three Bears from [57].

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(a) BabyBear (L. 2)

Use case Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Ci
ph

er
te
xt

Ke
y
G
en

.

En
ca
ps
.

D
ec
ap

s.

Sec. AC
KeyGen oD

Ses. SC

(b) MamaBear (L. 4)

Figure 3.40: Use case suitability for Three Bears.

Three Bears is a lattice-based Key Encapsulation Mechanism based on the Integer Module
Learning With Errors (I-MLWE) problem. It features a highly efficient performance and
competitive key sizes, comparable to the most efficient lattice-based KEMs from above.
From a security point of view, however, Three Bears is rather immature. I-MLWE is a

new variant of the MLWE problem that was introduced along with the Three Bears scheme.
Although asymptotic security reductions between I-MLWE and MLWE exist, the I-MLWE
problem has not been rigorously reviewed by the broader research community yet. Thus,
NIST chose not to consider Three Bears for Round 3 of the standardization process.

Analysis and Optimization of
PQC Schemes

Lattice-based schemes 37

3.5.3 Suitability for QuantumRISC

Lattice-based schemes feature the best overall performance profile. That is, schemes are
relatively balanced between key sizes, signature sizes, and running times, which could be
beneficial for many applications, even when including resource-constrained devices.

Among the lattice-based KEMs, CRYSTALS-Kyber and Saber feature the best performance
profiles, while other schemes like NTRU, NTRU Prime, and FrodoKEM are designed more
conservatively in terms of security considerations, and are therefore not as fast and compact.
Among the lattice-based signature schemes, CRYSTALS-Dilithium and FALCON are

promising schemes that moved to Round 3 of the NIST standardization.
In QuantumRISC, we mainly focus on the CRYSTALS schemes due to their excellent

performance profile, and FrodoKEM because of its more conservative security design and
the BSI recommendation.

This mostly aligns with NIST’s decisions to standardize CRYSTALS-Dilithium and CRYSTALS-
Kyber as main recommendations [5].

38 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.6 Multivariate schemes

3.6.1 Signature

GeMSS

Publication: 2017
Standardization: NIST Round 3 (alternate candidate)

Security: immature
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 352 190B

Secret Key Size: 128B

Signature Size: 258B

Key Generation Time: 38 700 000Cycles

Signing Time: 531 000 000Cycles
Verification Time: 106 000Cycles

(a) GeMSS128 (L. 1)

Number of Signatures: ∞#
Public Key Size: 1 237 960B

Secret Key Size: 192B

Signature Size: 411B

Key Generation Time: 175 000 000Cycles

Signing Time: 1 800 000 000Cycles
Verification Time: 304 000Cycles

(b) GeMSS192 (L. 3)

Figure 3.41: Criteria for GeMSS from [30].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) GeMSS128 (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) GeMSS192 (L. 3)

Figure 3.42: Use case suitability for GeMSS.

GeMSS is a multivariate-based signature scheme based on the HFEv construction. Its sig-
nature sizes are among the smallest and verification performance among the most efficient
of all PQC schemes. However, the signing performance is comparably slow and public
keys are large, which makes GeMSS appropriate mainly for offline signing applications.
Furthermore, NIST notes that GeMSS is difficult to implement on low-end devices [4].

Like Rainbow, ROLLO, and RQC, GeMSS was subject to an algebraic attack. However, this
attack did not break any of the GeMSS parameter sets (see [4]). GeMSS mainly competes
with Rainbow, which offers faster signing and smaller public keys, while signatures are
slightly larger.
Due to cryptanalytic progress, such as efficient key-recovery attacks [88], GeMSS did

not advance to NIST Round 4 [5].

Analysis and Optimization of
PQC Schemes

Multivariate schemes 39

LUOV

Publication: 2017
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 11 500B

Secret Key Size: 32B

Signature Size: 239B

Key Generation Time: 1 100 000Cycles
Signing Time: 224 000Cycles

Verification Time: 49 000Cycles

(a) LUOV Level 1

Number of Signatures: ∞#
Public Key Size: 35 400B

Secret Key Size: 32B

Signature Size: 337B

Key Generation Time: 4 600 000Cycles
Signing Time: 643 000Cycles

Verification Time: 152 000Cycles

(b) LUOV Level 3

Figure 3.43: Criteria for LUOV from [19].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) LUOV Level 1

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) LUOV Level 3

Figure 3.44: Use case suitability for LUOV.

LUOV [18] is a multivariate-based signature scheme based on a lifted variant of the
Unbalanced Oil-Vinegar (UOV) signature scheme. This new construction allows for much
smaller keys than in UOV.
However, LUOV was subject to a new differential attack, that broke the proposed pa-

rameter sets [52]. Although the lifting approach still appears promising, LUOV did not
proceed to NIST Round 3 due to its immature security assumptions.

40 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

MQDSS

Publication: 2016
Standardization: NIST Round 2

Security: immature
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 46B

Secret Key Size: 16B

Signature Size: 28 400B

Key Generation Time: 1 035 498Cycles
Signing Time: 5 466 490Cycles

Verification Time: 3 563 610Cycles

(a) MQDSS-31-48 (L. 1-2)

Number of Signatures: ∞#
Public Key Size: 64B

Secret Key Size: 24B

Signature Size: 59 928B

Key Generation Time: 2 406 494Cycles

Signing Time: 14 355 450Cycles
Verification Time: 9 806 182Cycles

(b) MQDSS-31-64 (L. 3-4)

Figure 3.45: Criteria for MQDSS from [86].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) MQDSS-31-48 (L. 1-2)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) MQDSS-31-64 (L. 3-4)

Figure 3.46: Use case suitability for MQDSS.

MQDSS [36] is a multivariate-based signature algorithm based on the multivariate quadratic
(MQ) problem. However, its structure is more comparable to symmetric-based schemes
like SPHINCS+ and Picnic, rather than other multivariate schemes. MQDSS offers key sizes
that are among the smallest of all PQC schemes, but large signature sizes and rather slow
performance compared to other multivariate signatures.

MQDSS was subject to a forgery attack, that required the choice of much larger parame-
ters, and therefore worse performance. Due to this, the competitors SPHINCS+ and Picnic
appear to be better candidates for standardization, and MQDSS did not advance to NIST
Round 3 [4].

Analysis and Optimization of
PQC Schemes

Multivariate schemes 41

Rainbow

Publication: 2
Standardization: NIST Round 3

Security: immature
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 157 800B

Secret Key Size: 101 200B

Signature Size: 528B

Key Generation Time: 9 900 000Cycles
Signing Time: 67 000Cycles

Verification Time: 34 000Cycles

(a) Rainbow-I (L. 1)

Number of Signatures: ∞#
Public Key Size: 861 400B

Secret Key Size: 611 300B

Signature Size: 1312B

Key Generation Time: 52 000 000Cycles
Signing Time: 285 000Cycles

Verification Time: 132 000Cycles

(b) Rainbow-III (L. 3)

Figure 3.47: Criteria for Rainbow from [51].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) Rainbow-I (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) Rainbow-III (L. 3)

Figure 3.48: Use case suitability for Rainbow.

Rainbow [49] is a multivariate-based signature scheme based on the Unbalanced Oil-Vinegar
(UOV) signature scheme. Its additional structure allows for efficiency advantages compared
to UOV. Rainbow features small signature sizes and efficient signing and verifying, but has
large public keys and a rather slow key generation.
However, the additional structure opens Rainbow to more avenues for cryptanalytic

advances. During NIST Round 2, the proposed parameters had to be increased due to
cryptanalytic progress (see [4]). During Round 3, a more efficient key-recovery attack
broke Rainbow instantiations from the Round 3 submission [C:Beullens22]. Thus, larger
parameters and slower performance numbers than presented above (taken from the Round 3
submission) would be required to achieve sufficient security. However, due to the dwindling
confidence in the security of Rainbow, and tweaks from the basic UOV construction in
general, it did not proceed to NIST Round 4 [5].

42 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.6.2 Suitability for QuantumRISC

In general, multivariate signature schemes offer a very fast signature verification, and thus
seem suitable for applications on constrained devices that only have to perform this task.
On the other hand, public keys are large, which means that they may not fit in memory of
a memory-constrained device. Nevertheless, especially Rainbow and LUOV appeared to be
promising if this problem can be overcome.
However, recent attack improvements against GeMSS, LUOV, and Rainbow (see Sec-

tion 3.6.1) further increased the parameter sizes, and significantly weakened the confidence
in the security of multivariate signature schemes. Therefore, their usage is currently not
recommended. An exception is the plain UOV signature scheme, since the mentioned
attacks exploit optimizations that were only introduced for Rainbow resp. LUOV. However,
UOV is less efficient, and therefore did not participate in the NIST standardization process.

Analysis and Optimization of
PQC Schemes

Multivariate schemes 43

3.7 Symmetric-/Hash-based schemes

3.7.1 Signature

Picnic

Publication: 2017
Standardization: NIST Round 3 (alternate candidate)

Security: immature
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 34B

Secret Key Size: 17B

Signature Size: 12 595B

Key Generation Time: N/A
Signing Time: 18 590 000Cycles

Verification Time: 14 260 000Cycles

(a) Picnic3-L1 (L. 1)

Number of Signatures: ∞#
Public Key Size: 48B

Secret Key Size: 24B

Signature Size: 27 551B

Key Generation Time: N/A
Signing Time: 37 560 000Cycles

Verification Time: 29 200 000Cycles

(b) Picnic3-L3 (L. 3)

Figure 3.49: Criteria for Picnic from [63] (no data for key generation given).

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) Picnic3-L1 (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) Picnic3-L3 (L. 3)

Figure 3.50: Use case suitability for Picnic.

Picnic [33, 90] is a signature scheme that uses a non-interactive zero-knowledge proof of
knowledge of a secret key. In contrast to most of the other PQC proposals, it is not based on
the hardness of a number-theoretic problem, but on assumptions on symmetric primitives,
in particular, a hash function and a block cipher. The design of Picnic is modular, which
means that hash functions and block ciphers can easily be substituted. Picnic features small
public key sizes, but large signatures and slow signing and verifying.

Although the security assumptions on symmetric primitives are rather conservative, the
design of Picnic and its LowMC block cipher are rather new. Thus, more research in this
direction is required, and it did not proceed to NIST Round 4 [5].

44 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

SPHINCS+

Publication: 2015
Standardization: NIST standardization choice

Security: well-understood
Patents: none known

Meta criteria

Number of Signatures: ∞#
Public Key Size: 32B

Secret Key Size: 64B

Signature Size: 7856B

Key Generation Time: 84 964 790Cycles

Signing Time: 644 740 090Cycles
Verification Time: 861 478Cycles

(a) SPHINCS+-SHA-256-128s-simple (L. 1)

Number of Signatures: ∞#
Public Key Size: 48B

Secret Key Size: 96B

Signature Size: 16 224B

Key Generation Time: 125 310 788Cycles

Signing Time: 1 246 378 060Cycles
Verification Time: 1 444 030Cycles

(b) SPHINCS+-SHA-256-192s-simple (L. 3)

Figure 3.51: Criteria for SPHINCS+ from [59].

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(a) SPHINCS+-SHA-256-128s-simple (L. 1)

Use case #
Si
gn

at
ur
es

Pu
bl
ic
Ke

y

Se
cr
et

Ke
y

Si
gn

at
ur
e

Ke
y
G
en

.

Si
gn

in
g

Ve
rifi

ca
tio

n

Sec. DL
Feat. Ac.
Sec. AC

KeyGen oD

(b) SPHINCS+-SHA-256-192s-simple (L. 3)

Figure 3.52: Use case suitability for SPHINCS+.

SPHINCS+ is a stateless hash-based signature scheme. Thus, in contrast to LMS and XMSS,
a signer does not have to keep track of any information of parts of a SPHINCS+ tree
that have been used for signing already. Although the number of signatures per private
key is limited in theory, in practice these limits are usually large enough to consider this
number unlimited. The security of SPHINCS+ relies solely on a hash function that satisfies
certain security requirements. E.g., these include second preimage resistance, which is a
well-understood property.

While public key sizes are very small in SPHINCS+, its signatures are comparably large
and signing is rather slow. We note that tradeoffs between signature size and speed are
possible.

Due to its very conservative security features, NIST chose to standardize SPHINCS+ after
Round 3 [5].

Analysis and Optimization of
PQC Schemes

Symmetric-/Hash-based schemes 45

LMS

Publication: 1993
Standardization: NIST Recommendation, IETF Standard

Security: well-understood
Patents: expired

Figure 3.53: Criteria for LMS.

LMS is a stateful hash-based signature scheme. This means that an LMS key pair can only
be used for a limited number of signatures, since an instantiation contains a limited number
of one-time key pairs. Thus, the signer must keep track of the state, which indicates which
of the key pairs have already been used. Note that depending on the required number of
signatures, the performance numbers and key/signature sizes significantly differ. Thus, we
refrain from giving specific representative data on this, since the requirements of different
application scenarios will lead to different data and ratings.
The security of LMS is well-understood, since it solely depends on security features of

the respective hash function. LMS and XMSS have both been recommended by NIST [39].

XMSS

Publication: 2011
Standardization: NIST Recommendation, IETF Standard

Security: well-understood
Patents: none known

Figure 3.54: Criteria for XMSS.

Like LMS, XMSS [25] is a stateful hash-based signature scheme, which means that only a
limited number of messages can be signed per public key, and the signer has to keep track
of which one-time key pairs have already been used. As for LMS, the security of XMSS
relies on the underlying hash function, and is well-understood. LMS and XMSS share a
similar design, but differ in several design choices. In general, XMSS and LMS share a
similar performance profile, where XMSS allows for slightly smaller signatures, while being
somewhat slower than LMS.

Similar to the case of LMS, the performance and key and signature sizes differ with the
required number of signatures, and hence we refrain from giving representative data and
ratings. In general, these numbers can be considered to lie in the realm of the numbers
of SPHINCS+, while the simpler structure of stateful schemes allows for a slightly faster
performance and smaller signature sizes in both LMS and XMSS.
XMSS has been recommended by NIST along with LMS [39].

46 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

3.7.2 Suitability for QuantumRISC

Hash-based schemes are considered as being a conservative choice in terms of security, since
they rely on certain well-understood features of cryptographic hash functions. Although
they cannot compete, e.g., with lattice-based signature schemes in terms of performance
and signature sizes, these schemes are promising options due to their well-understood
security, and a high likeliness of being standardized. Furthermore, the performance of
hash-based schemes can be improved by deploying (existing) hardware accelerators for
faster hash evaluations.

If the use case allows for managing the state of the scheme, XMSS or LMS can be used.
For both schemes there is is an IETF standard, and they are recommended by NIST. If a
stateless scheme is required, SPHINCS+ is a conservative option, which was chosen to be
standardized after NIST Round 3.
The symmetric-based scheme Picnic relies on the security of both hash functions and

block ciphers. Although it appears to be competitive with hash-based schemes, this new
approach requires further analysis, e.g., with respect to its security and performance. Thus,
we restrict to hash-based schemes in QuantumRISC.

Analysis and Optimization of
PQC Schemes

Symmetric-/Hash-based schemes 47

Properties Backend Client(s)
Latency <10 ms:<1 s <10 ms:<1 s
Executions over product lifetime unlimited unlimited
Size of processed data ≤64B:>1 GB ≤64B:>1 GB
Physical accessibility untrusted:trusted untrusted
Computational power Server embedded:IT
RAM availability Server embedded:IT
Storage availability Server embedded:IT
Key pairs ≤1000 ≤1000
Data dissipation one-to-one
Life time ≤1 year
Current security level ≤128 bits

Table 3.5: Requirements of the use case Session-based Secure Channel [78, Table 3.27].

48 Analysis and Optimization of
PQC Schemes
Analysis of PQC schemes

4 Performance optimizations

4.1 Parameters for SQISign

This section aims at finding parameters for the SQISign signature scheme that allow for
efficient implementations [24]. In recent years the tantalising problem of finding two
large, consecutive, smooth integers has emerged in the context of instantiating efficient
isogeny-based public key cryptosystems. Though the problem was initially motivated in the
context of key exchange [40], a wave of polynomial time attacks has completely broken the
isogeny-based key exchange scheme SIDH, leaving post-quantum signatures as the most
compelling cryptographic application of isogenies at present. In terms of practical potential,
the leading isogeny-based signature scheme is SQISign; it boasts the smallest public keys
and signatures of all post-quantum signature schemes, at the price of a signing algorithm
that is orders of magnitude slower than its post-quantum counterparts. Finding secure
parameters for SQISign is related to the twin smooth problem mentioned above, with a
large contributing factor to the overall efficiency of the protocol being the smoothness
bound, �, of the rational torsion used in isogeny computations. This bound corresponds
to the degree of the largest prime-degree isogeny computed in the protocol, for which
the fastest algorithm runs in $̃(

√
�) field operations. Part of the reason for SQISign’s

performance drawback is that the problem of finding parameters with small � is difficult:
the fastest implementation to date targets security comparable to NIST Level I and has
� = 3923 [46].
We revisit the problem of finding two consecutive �-smooth integers by giving an

optimized implementation of the Conrey-Holmstrom-McLaughlin “smooth neighbors”
algorithm (CHM) [37]. Though the results are not large enough to be cryptographic
parameters themselves, we feed them as input into known methods of searching for twins
to yield cryptographic parameters that are much smoother than those given in prior works.
Our methods seem especially well-suited to finding parameters for the SQISign signature
scheme, particularly those that are geared towards high-security levels.

The CHM algorithm

Conrey, Holmstrom, and McLaughlin [37] present the following algorithm for producing
many �-smooth values of - (- + 1). It starts with the initial set

((0) = {1, 2, . . . , � − 1}

of all integers less than �, representing the �-smooth twins (1, 2), (2, 3), …, (� − 1, �).
Next, it iteratively passes through all pairs of distinct @, A ∈ ((0) , @ < A and computes

B

B′
=

@

@ + 1
· A + 1

A
,

Analysis and Optimization of
PQC Schemes

Performance optimizations 49

writing B
B′ in lowest terms. If B′ = B + 1, then clearly B also represents a twin smooth pair.

The next set ((1) is formed as the union of ((0) and the set of all solutions B such that
B′ = B + 1. Now the algorithm iterates through all pairs of distinct @, A ∈ ((1) to form ((2)

and so on. We call the process of obtaining ((3) from ((3−1) the 3-th CHM iteration. Once
((3) = ((3−1) , the algorithm terminates.

Implementation and results

We implemented a somewhat optimized version of the pure CHM algorithm in C++. In
particular, this implementation is parallelized, and avoids multiple checks of the same
pairs of twin smooths (@, A). Furthermore, we iterate through smoothness bounds: We
start with a small bound �1 and the initial set ((0)1 = {1, . . . , �1 − 1}, and use the CHM
algorithm to iteratively compute sets ((7)1 until we reach some 31 such that ((31)1 = (

(31−1)
1 .

In the next iteration, we increase the smoothness bound to �2 > �1, define the initial set
(
(0)
2 = (

(31)
1 ∪{�1, . . . , �2−1}. Again we compute CHM iterations until we find 32 such that

(
(32)
2 = (

(32−1)
2 , where we avoid checking pairs (@, A) that have been processed in earlier

iterations. Ideally, we could repeat this procedure until we reach a smoothness bound
�7 for which the CHM algorithm produces large enough twin smooths for cryptographic
purposes. However, our data suggests that this is infeasible in practice due to both runtime
and memory limitations.

In particular, we ran this approach up to the smoothness bound � = 547, after which the
set of twin smooths contains 82,026,426 pairs, whose bitlength distribution roughly equals
a normal distribution centered around 58-bit. The largest pair has a bitlength of 122 bits.
However, the sheer amount of twins smooths found means that we cannot continue with
this approach to find large enough twin smooths for cryptographic applications.

Therefore, we implemented various other optimizations, such as only checking pairs of
twin smooths (@, A) that satisfy @ < A < 9 · @ for 1 < 9 ≤ 2. This sacrifices the completeness
of the CHM algorithm for the benefit of being able to move to larger smoothness bounds.
With variants of this approach, we ran CHM up to � = 211, finding twin smooths of up to
145 bits.

Cryptographic primes of the form > = 2@< − 1

For SQISign, we require primes >, such that >2 − 1 has log) ′ bits of �-smoothness,
where) ′ = 2 5) . Concretely, we have log > ∈ {256, 384, 512} for NIST Level I, III and
V (respectively),) ≈ >5/4 and 5 as large as possible. In the current implementation of
SQISign, 5 ≈ blog

(
>1/4

)
c (i.e.,) ′ ≈ >3/2), and therefore, we aim for this when finding

primes.
Fix a smoothness bound � and let ><(F) = 2F< − 1. We have ><(F)2 − 1 = 4F<(F< − 1),

and its factorization for < = 2, . . . , 6 is given in Table 4.1.
We observe that for < even, both F + 1 and F − 1 appear in the factorization of ><(F) − 1.

In this case, for twin smooths (@, @ ± 1), evaluating ><(F) at @ guarantees that we have a
smooth factor 4F<(F ± 1) in >2 − 1. For < odd, we will only have that F − 1 appears in the
factorization, and therefore only consider twins (@, @ − 1) to guarantee we have �-smooth
factor 4F<(F − 1).

50 Analysis and Optimization of
PQC Schemes
Performance optimizations

< ><(F)2 − 1

2 4F2(F − 1) (F + 1)
3 4F3(F − 1) (F2 + F + 1)
4 4F4(F − 1) (F + 1) (F2 + 1)
5 4F5(F − 1) (F4 + F3 + F2 + F + 1)
6 4F6(F − 1) (F + 1) (F2 − F + 1) (F2 + F + 1)

Table 4.1: Factorization of ><(F)2 − 1 for < = 2, 3, 4, 5, 6, where ><(F) = 2F< − 1.

Thus, we can plug twin smooths of the correct sizes found via CHM in ><(F), and
obtain high probabilities for finding SQISign-friendly primes. The results are summarized
in Table 4.2. Note that

√
�/ 5 is the signing cost metric, which roughly estimates the cost

of signing.
We note that we can also pick larger values of < and simply compute ><(F) for smooth

inputs F. For < ∈ {12, 18}, this yields good smoothness probabilities, yet the search space is
relatively small, and can easily be exhausted. Thus, the respective primes in Table 4.2 cannot
be improved, while we could find more primes through CHM by using more computational
power and further optimizations for CHM.

Analysis and Optimization of
PQC Schemes

Parameters for SQISign 51

NIST security
level < @ dlog2(>)e 5 �

√
�/ 5 log>())

NIST-I

2
1211460311716772790566574529001291776

2091023014142971802357816084152713216

241

243

49

49

1091

887

0.67

0.61

1.28

1.28

3

10227318375788227199589376

21611736033260878876800000

20461449125500374748856320

26606682403634464748953600

251

254

254

255

31

31

46

40

383

421

523

547

0.63

0.66

0.50

0.58

1.31

1.28

1.26

1.28

4 34848218231355211776∗ 261 77 2311 0.62 1.30

NIST-III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4

5139734876262390964070873088

12326212283367463507272925184

18080754980295452456023326720

27464400309146790228660255744

370

375

377

379

45

77

61

41

11789

55967

95569

13127

2.41

3.07

5.07

2.79

1.26

1.31

1.26

1.29

6
2628583629218279424

5417690118774595584

11896643388662145024

369

375

382

73

79

79

13219

58153

10243

1.58

3.05

1.28

1.27

1.27

1.30

12 2446635904∗ 376 85 9187 1.13 1.29

NIST-V

4
114216781548581709439512875801279791104∗

123794274387474298912742543819242587136∗
507

508

65

41

75941

15263

4.24

3.01

1.26

1.29

6

9469787780580604464332800

12233468605740686007808000

26697973900446483680608256

31929740427944870006521856

41340248200900819056793600

499

502

508

510

512

109

73

85

91

67

703981

376963

150151

550657

224911

7.70

8.41

4.56

8.15

7.08

1.25

1.28

1.26

1.25

1.28

12 5594556480768∗ 510 97 88469 3.07 1.29

18 335835120∗ 511 73 24229 2.13 1.29

Table 4.2: A table of SQISign parameters > = ><(@) found using twin-smooth integers
(@, @ ± 1) at each security level. The 5 is the power of two dividing (>2 − 1)/2
and � is the smoothness bound of the odd cofactor) ≈ >5/4. The @ marked with
an asterisk correspond to primes > not found using the CHM machinery.

52 Analysis and Optimization of
PQC Schemes
Performance optimizations

5 Optimization of memory requirements
and message sizes

5.1 Memory-constrained Classic McEliece

Deploying Classic McEliece in practical applications can be challenging due to the size of
its public keys, especially in the context of embedded, memory-constrained devices. In the
paper Classic McEliece Implementation with Low Memory Footprint [84] this is addressed
and an implementation optimized to overcome memory constraints is presented. The
results are evaluated and demonstrated for an ARM-Cortex M4 development board that
runs with 168 MHz and has 256 kB of RAM.
The fundamental idea is to avoid storing the whole public key by utilizing smaller

structures which can be used to retrieve parts of the public key ad-hoc as they are needed.
This process is referred to as streaming the public key in analogy to streaming large video
files: only small chunks are actually sent and processed at a time. While this concept can
be employed for on-line communication protocols, it is also applicable, e.g., to store the
public key memory efficiently on the flash storage by streaming the public key to the flash
storage.
Algorithm 1 depicts the Classic McEliece key generation algorithm.

Algorithm 1: Classic McEliece Key Generation
Input: Classic McEliece Parameters (<, B, ;, ? = 2;, 9 = < − ;B)
Output: Private Key (Γ, A), Public Key)

1 Generate a uniform random monic irreducible polynomial 6(F) ∈ F? [F] of degree B.
2 Select a uniform random sequence (U1, U2, ..., U<) of < distinct elements of F?
3 Compute the B × < matrix �̃ = ℎ7, 8 over F?, where ℎ7, 8 = U7−1

8
/6(U 8) for 7 = 1, ..., B

and 8 = 1, ..., <.
4 Form an ;B × < matrix �̂ over F2 by replacing each entry 20 + 21H + ... + 2;−1H;−1

of �̃ with a column of B bits 20, 21, ..., 2;−1.
5 Reduce �̂ to systematic form (�<−9 |)), where �<−9 is an (< − 9) × (< − 9) identity

matrix.
6 if the previous step fails (i.e., the leftmost (< − 9) × (< − 9) submatrix of �̂ is singular)

then
7 go back to Step 1.
8 end
9 Generate a uniform random n-bit string A.

10 Put Γ = (6, (U1, U2, ..., U<)) and output (Γ, A) as private key and) as public key.

Steps 1 and 2 generate the private key, i.e., a binary Goppa code. The following steps

Analysis and Optimization of
PQC Schemes

Optimization of memory requirements and message sizes 53

derive the public key from the private key by forming the parity-check matrix for the
binary Goppa code. Most notably, Gaussian elimination is used in Step 5 to reduce the
parity-check matrix to systematic form (if possible). The generation of the private key
can be done memory efficiently whereas the computation of the public key requires a lot
of memory for storing the large matrix �̃ which is transformed into �̂ and successively
� = (�<−9 |)). In order to compute the Gaussian elimination algorithm, a (< − 9) × <

matrix is required to be held in memory.
In order to both save the space that is required for storing the resulting public key)

and for computing the Gaussian elimination algorithm, Steps 3 to 5 are replaced in the
following extended private key generation algorithm, Algorithm 2. The public key is not
an output any longer. Essentially, the key generation algorithm is split into the extended
private key generation algorithm, which computes the (< − 9) × (< − 9) matrix (−1 over
F2 instead of the public key) , and the public key column retrieval algorithm, Algorithm 3.

Algorithm 2: Extended Private Key Generation
Parameter: <, B, ;, ? = 2;, 9 = < − ;B

Output: >@7D_4FB = ((6(F), (U1, ..., U<), A, ()
1 Generate a uniform random irreducible polynomial 6(F) ∈ F? [F] of degree B.
2 Select a uniform random sequence (U1, U2, ..., U<) of < distinct elements of F?.
3 Compute the B × (< − 9) matrix (̃−1 over F? by letting ((̃−1)7, 8 = ℎ7, 8, where

ℎ7, 8 = U7−1
8

/6(U 8) for 7 = 1, ..., B and 8 = 1, ..., < − 9.
4 Form an (< − 9) × (< − 9) matrix (−1 over F2 by replacing each entry

20 + 21H + ... + 2;−1H;−1 of (̃−1 with a column of ; bits 20, 21, ..., 2;−1.
5 Compute (as the inverse of (−1.
6 if the previous step fails (i.e., (−1 is singular) then
7 go back to line 1.
8 end
9 Generate a uniform random <-bit string A.

The public key column retrieval algorithm can be used to compute single columns of the
public key, given the extended private key as input. The extended private key replaces both
the former public and private key. Computing single columns of the public key enables
the streaming of the public key. In contrast to requiring memory for storing a (< − 9) × <

matrix for computing the public key, now only the (<− 9) × (<− 9) matrix in the extended
private key is required. This is, depending on parameter sets, roughly 2.6 to 3.7 times less
than would be required originally. For the mceliece348864 parameter set, only 81 268B are
required for the extended private key, in contrast to 267 572B for the public and private
key.
In order to compute the inverse of (−1 in Step 5 in Algorithm 3, the inversion has to

be done memory efficiently as well. Otherwise, the memory requirements of the key
generation are unnecessarily high, perhaps preventing memory-constrained devices from
performing it. Algorithm 4 depicts an efficient algorithm to invert the matrix almost in-place
(the permutation matrix is additionally stored as an array, requiring 2(<9) bytes).

Algorithm 5 depicts the LU decomposition algorithm that is used. This is essentially the

54 Analysis and Optimization of
PQC Schemes
Optimization of memory requirements and message sizes

Algorithm 3: Public Key Column Retrieval
Input: >@7D_4FB = (Γ, A, (), Column 2 (Integer)
Parameter: <, B, ;, ? = 2;, 9 = < − ;B

Output: 2th column of the public key:)•2

1 Compute �̃•2 as the B-dimensional vector over F? with �̃ 8,2 = U
8−1
2 /6(U2) for

8 = 1, 2, ..., B.
2 Compute �̂•2 as the ;B-dimensional vector over F2 that results by replacing each

entry 20 + 21H + ... + 2;−1H;−1 of �̃•2 with a column of ; bits 20, 21, ..., 2;−1.
3 Compute �•2 = (�̂•2.

Algorithm 4: LU-Decomposition-based Matrix Inversion

Input: (−1 ∈ F
(<−9)×(<−9)
2

Output: (
1 Find the LU decomposition of (−1, i.e., %(−1 = !* where %, !, * ∈ F2

(<−9)×(<−9)

and P is a permutation matrix and ! and * are lower and upper triangular matrices.

2 Invert ! and *.
3 Compute the product *−1!−1.
4 Undo the permutation to obtain (= *−1!−1%.

“kij-variant” of the outer-product formulation of the Gaussian elimination algorithm. For
the implementation, care has to be taken in order to fulfill the constant time property.
The pivoting is most noteworthy here and Step 3 can for example be implemented by not
explicitly branching but using all-one or all-zero masks for byte operations, respectively.
Step 3 of Algorithm 4, the multiplication of *−1!−1, might also require some further

explaining. *−1 and !−1 are both stored in the memory where (−1 used to be – as upper and
lower triangular matrix, respectively. To obtain an algorithm that multiplies both matrices
in-place, the triangular structure of*−1 and !−1 is utilized. For convenience, define �̄ as the
matrix that contains !−1 and *−1 as a lower and an upper triangular matrix and � as � :=

*−1!−1. Each entry �(7, 8) can then be written as �(7, 8) = ∑<
9=max(7, 8)+1 �̄(9, 8) · �̄(7, 9).

By appropriately ordering the computations of entries of �, overriding values that are
needed for future computations is prevented. More precisely, first compute the element
in the top-left corner, i.e., the first diagonal element �(1, 1). Then, the three remaining
elements in the top-left 2 × 2-matrix can be computed in any order. Continuing like this,
i.e., computing the remaining five elements in the top-left 3× 3-matrix in any order, and so
on, all elements of � can be computed. Each evaluation of the given formula only depends
on values of �̄ that have not been overwritten by elements of � yet. Therefore, the outlined
approach can be implemented in-place.
With the presented algorithms, the (extended) private key holder can substantially

reduce the memory requirements on their end. The public key can be streamed to a
communication party, or to the flash memory, or any other place while requiring less
memory than what would originally be required. Note that streaming columns instead
of rows means that the public key is transposed when compared to the Classic McEliece

Analysis and Optimization of
PQC Schemes

Memory-constrained Classic McEliece 55

Algorithm 5: LU Decomposition

Input: � ∈ F
(<−9)×(<−9)
2

Output: %, !, * ∈ F
(<−9)×(<−9)
2 , s.t. %� = !*. Return ⊥ (error) if � is singular.

1 for 9 := 1 to < − 1 do
2 for 7 := 9 + 1 to < do
3 Swap row 7 with row 9 if the 7th row has a non-zero entry at the 9th column

and update % accordingly (partial-pivoting).
4 end
5 if Pivoting fails (i.e., A is singular) then
6 return ⊥
7 end
8 for 7 := 9 + 1 to < do
9 for 8 := 9 + 1 to < do
10 �(7, 8) := �(7, 8) − �(7, 9) · �(9, 8)
11 end
12 end
13 end

specification.
During on-line protocols – TLS as an example –, the memory requirements for the encap-

sulation operation can also be drastically reduced. The original encapsulation algorithm
requires the complete public-key matrix) . Since the public key is essentially only used
for a matrix-vector multiplication, it is trivial to reorder the operations such that single
rows or single columns of the public key can be processed at a time. Each processed chunk
of the public key can be used to update the intermediate result of the operation. Thus,
the encapsulation algorithm can be performed while the public key is received, and the
chunk of data can be processed and immediately deleted from memory. This makes a
very efficient streaming approach for the encapsulation operation possible. Algorithm 6
describes this for the case of consuming single columns of the public key at a time. This is in
accordance with the public key column retrieval algorithm, i.e., the sending party can use
the public key column retrieval algorithm to memory efficiently stream the public key, and
the receiving party can use the single-column encoding subroutine to memory-efficiently
compute the syndrome of 4.

5.2 Memory-constrained verification of PQC signatures

Cryptographic schemes from the five families of PQC have different advantages and disad-
vantages in terms of efficiency, e.g., memory and timing. Hence, in certain applications
it can be challenging to deploy specific schemes because they do not fulfill the given
requirements. In [56] we address the challenge of performing signature verification of
post-quantum signature schemes with a large public key or signature in a highly memory-
constrained environment. For our analysis, we chose an ARM Cortex-M3 board with 128
kB RAM and 1 MB Flash, an STM32 Nucleo-F207ZG, as the implementation platform. This

56 Analysis and Optimization of
PQC Schemes
Optimization of memory requirements and message sizes

Algorithm 6: Classic McEliece Single-Column Encoding Subroutine
Input: weight-B Vector 4 ∈ F <2
Parameter: <, B, ;, ? = 2;, 9 = < − ;B

Output: �0
1 Initialize �0 as an < − 9-dimensional zero-vector.
2 Set 7 := 1.
3 while 7 ≤ < − 9 do
4 Set �0 7 := 47.
5 Set 7 := 7 + 1.
6 end
7 Set 7 := 1.
8 while 7 ≤ 9 do
9 Read the 7th column of the public key) from some location into)• 7.

10 Set �0 := �0 + 47 ·)• 7.
11 Set 7 := 7 + 1.
12 end

is a practical and widely deployed setup in, for instance, the automotive sector. However,
this amount of memory is insufficient for most schemes.
We focused on the NIST PQC round-3 candidates Dilithium, Falcon, Rainbow, GeMSS,

and SPHINCS+, and studied performance improvements for their verification subroutines.
We first revealed that for Rainbow and GeMSS, public keys are too big, while for SPHINCS+,
signatures do not fit in this memory. To make signature verification work also for these
schemes, our approach is to stream the public key or the signature. We show that this way
signature verification can be done keeping only small data packets in constrained memory.
However, when streaming the public key, the device needs to securely store a hash value
of the public key to verify the authenticity of the streamed public key. During signature
verification, the public key is incrementally hashed, matching the data flow of the streamed
public key.
We implemented and benchmarked the proposed public key and signature stream-

ing approach for four different signature schemes (Dilithium, SPHINCS+, Rainbow, and
GeMSS). Although for Dilithium streaming the public key is not strictly necessary, the
saved bytes allow us to keep more intermediate results in memory, which results in a
speed-up. For comparison, we also implemented the lattice-based scheme Falcon for
which streaming the public key or the signature is not necessary in our scenario as the
entire public key and signature fit into RAM. We demonstrate that the proposed stream-
ing approach is very well suited for constrained devices with a maximum utilization of
8 kB RAM and 8 kB Flash. The source code of our work is published and available at
https://git.fslab.de/pqc/streaming-pq-sigs
Table 5.1 presents the speed results for our implementations. The studied signature

schemes rely on either SHA-256 (rainbowI-classic, sphincs-sha256) or SHA-3/SHAKE
(dilithium2, falcon-512, and gemss-128). In a typical HSM enabled device, SHA-256
would be available in hardware and SHA-3/SHAKE will also be available in the future.

Analysis and Optimization of
PQC Schemes

Memory-constrained verification of PQC signatures 57

https://git.fslab.de/pqc/streaming-pq-sigs

Table 5.1: Cycle count for signature verification for a 33-byte message. Average over 1 000
signature verifications. Hashing cycles needed for verification of the streamed in
public key (hashing and comparing to embedded hash) are reported separately.
We also report the verification time on a practical HSM running at 100 MHz and
also the total time including the streaming at 20 Mbit/s.

w/o pk vrf. w/ pk verification w/ streaming
pk vrf. total timee 20 Mbit/s

sphincs-sa 8 741k 0 8 741k 87.4 ms 90.6 ms
sphincs-fb 26 186k 0 26 186k 261.9 ms 268.7 ms

rainbowI-classic 333k 6 850kd 7 182k 71.8 ms 136.5 ms
gemss-128 1 619k 109 938kc 111 557k 1 115.6 ms 1 679.1 ms
dilithium2 1 990k 133kc 2 123k 21.2 ms 21.8 ms
falcon-512 581k 91kc 672k 6.7 ms 8.2 ms

a -sha256-128s-simple b -sha256-128f-simple c SHA-3/SHAKE d SHA-256
e At 100 MHz (no wait states)

However, on the Nucleo-F207ZG no hardware accelerators are available. Hence, we resort
to software implementations instead. For SHA-256 we use the optimized C implementation
from SUPERCOP.1 For SHA-3/SHAKE, we rely on the ARMv7-M implementation from the
XKCP.2

This work was inspired by the QuantumRISC result [84], where we studied streaming of
the public key for the McEliece encryption scheme.

5.3 Memory-constrained SPHINCS+ signing and verifying

While SPHINCS+ offers small keys, the signatures can be up to around 50 kB. This can
be challenging for memory-constrained devices. Therefore, an approach is explored to
reduce the memory requirements. Similarly to the Classic McEliece optimizations, the
streaming of the signature is explored. The paper [56] demonstrates the practicability
for some parameter sets of different PQ algorithms, including SPHINCS+ and considers
streaming as well. In contrast, [76] focuses on SPHINCS+ entirely and encompasses all
SPHINCS+ parameter sets (apart from Haraka).

The first central observation in [76] is that a SPHINCS+ signature can be written to and
read from sequentially in < byte chunks where < is the output length (in bytes) of the
underlying hash function. That is, in principle, accessing previously read or written chunks
is not necessary in order to verify or generate the signature. The structure of a SPHINCS+

signature can be seen in Figure 5.1.
A streaming interface is implemented which uses the abstraction that the signature is

not a large buffer any more. Instead, a number of chunks of the signature can be requested
to be read or written. The intention is that in the background, the streaming interface
can then do the actual I/O operation that reads or writes the chunk(s). If beneficial for

1https://bench.cr.yp.to/supercop.html
2https://github.com/XKCP/XKCP

58 Analysis and Optimization of
PQC Schemes
Optimization of memory requirements and message sizes

https://bench.cr.yp.to/supercop.html
https://github.com/XKCP/XKCP

R . . . Merkle Merkle . . . Merkle

priv. key node node . . . node

node node . . . node node node . . . node

n byte

n byte n byte

n byte n byte

authentication path

signature authentication path

Figure 5.1: Structure of a SPHINCS+ signature.

the concrete use case, the implementation can also choose to buffer some chunks, e.g., to
fill an entire frame in an internet communication. It should be noted that the I/O can be
anything that can be expressed by sequential read and write functions. The signature can
simply be read from or written to a file, but the streaming interface could also be used to
read or write the signature in a complex network protocol.
Necessary changes to the reference code are outlined and detailed measurements are

given. As a stand-alone implementation, the memory requirements for the key generation,
sign, and verify operations are less than 3 kB for every parameter set. Here memory
requirements refer to the maximum stack size and no heap is used by the implementation.
The memory requirements do not include the implementation of the signature streaming
(actual I/O operations) since this is highly dependent on the type and implementation of
the I/O.
As a proof of concept demonstration, the paper briefly explains and evaluates using

the streaming SPHINCS+ implementation with a TPM. For this, the authors integrate
the streaming interface into the TPM 2.0 specification and communicate with the TPM
implementation via SPI. Due to the speed of the SPI interface, there is a significant I/O
overhead in this case. The streaming implementation buffers 1 kB of the signature, reducing
the number of SPI transfers.

5.4 On-the-fly computation of twiddle factors for NTT

This section presents a technique to reduce memory consumption during the Number
Theoretic Transform (NTT) computation. The NTT is a common optimization used in
Module- and Ring-LWE based schemes, as it enables the multiplication of two polynomials
in < log < steps instead of <2 when common “school book” multiplication algorithms are
used. As part of [8], this technique was adapted to lower the memory consumption of
the Kyber and NewHope schemes. This version of the algorithm is often called Iterative
NTT [67].
The Number Theoretic Transform (NTT) is a generalization of the discrete Fourier

transform, and can be used to speed up the multiplication of polynomials, as done, for
example, in the Kyber and NewHope ciphers. The basic step of a NTT takes a polynomial 5
(mod -<+1) and transforms it into two polynomials 51 (mod -

<
2−Z) and 52 (mod -

<
2+Z)

with 5 = 51 + - 52, if a primitive root with Z2 = 1 exists. In principle, this transformation

Analysis and Optimization of
PQC Schemes

On-the-fly computation of twiddle factors for NTT 59

can be repeated recursively on 51 and 52, as long as an <-th primitive root with Z< = 1 in
the underlying field exists. During the recursive transformation, powers of the primitive –
in this context called twiddle factors – are used in butterfly operations, depending on the
algorithm and butterfly either in ascending or bit-reversed order.
The order of the twiddle factors used during the NTT varies depending on the choice

of the butterfly operation, e.g., Gentleman-Sande [55] or Cooley-Tukey [38], and the
order of the input polynomial such as bit-reversed order or normal order, and also the
order in which the coefficients are processed. The first design decision was not to use the
bit-reversal process with the goal to reduce memory instructions. Thus, a forward NTT
for normal order to bit-reversed order as well as an inverse NTT for bit-reversed order to
normal order was implemented.

Although on-the-fly computation of twiddle factors reduces the memory usage, multipli-
cation with reduction is more expensive than a single memory operation on most platforms.
Therefore, this version of the algorithm is often used in FPGA implementations, where
implementers can design efficient modular arithmetic circuits [85]. Software implementa-
tions usually opt for precomputation of all twiddle factors [23], or at least some part of
them [7] to reduce the running time.
While the RISC-V ISA only contains general purpose computing instructions, the in-

struction code space also reserves opcodes for custom instructions. Hence both FPGA
implementation tricks and the tricks used in implementations on constrained microcon-
trollers can be used on the RISC-V by providing instruction set extensions for modular
arithmetic. Part of [8] was also a single cycle multiplication operation in ℤ? that makes the
on-the-fly computation of twiddle factors possible without any performance penalty. Fur-
thermore, when interleaved, this multiplication does not stall the pipeline of the processor,
unlike a memory load instruction.
The results show that using such an on-the-fly calculation together with an instruction

set extensions for finite field arithmetic helps to reduce memory consumption not only of
program code but also of data in situations where constants can be recomputed on-the-fly
instead of storing them explicitly. This is particularly beneficial on architectures with small
or slow memory.

60 Analysis and Optimization of
PQC Schemes
Optimization of memory requirements and message sizes

6 Analysis of physical attacks

6.1 Safe-error attacks on SIKE and CSIDH

This section analyzes the resistance of SIKE and CSIDH towards safe-error attacks [26].
We present four safe-error attacks, two against SIKE and two against a constant-time
implementation of CSIDH that uses dummy isogenies. The attacks use targeted bitflips
during the respective isogeny-graph traversals. All four attacks lead to full key recovery.
By using voltage and clock glitching, we physically carried out two of the attacks - one
against each scheme -, thus demonstrate that full key recovery is also possible in practice.

Safe-error attacks

In so-called safe-error attacks, the adversary uses fault injections to perturb a specific
memory location with the intention of not modifying the final result of the computation:
The algorithm may overwrite or throw away modified values, making them safe errors.
The presence or absence of an error then gives insight into which code path the algorithm
executed. Two kinds of safe-error attacks exist: In a memory safe-error (M safe-error)
attack, the attacker modifies the memory, i.e., in general these attacks focus on specific
implementations. In a computational safe-error (C safe-error) attack, however, the compu-
tation itself is attacked through, e.g., skipping instructions. Hence, C safe-error attacks
rather target algorithmic vulnerabilities.

Safe-error attacks on SIKE

SIKE private keys consist of an integer ;, such that % + [;]& is the secret subgroup that
forms the kernel of the secret isogeny. Thus, fault attacks can target the computation of
% + [;]& to reveal the secret key ;. SIKE uses a three-point ladder for this computation,
which can be targeted for safe-error attacks. In general, such an attack initiates a SIKE
key exchange, faults the execution of the three-point ladder in step 9, and observes if the
key exchange still succeeds. Due to secret-dependent behavior in the three-point ladder,
this reveals the 9-th bit of the secret key. A suitable fault injection can be achieved in the
following ways.
Each step of the three-point ladder calls a function for a combined point doubling and

addition. Depending on the secret key bit of the respective step, only two of the three point
variables are overwritten in this function. Thus, an M safe-error attack can inject a fault to
change the value of such a variable, and observe if the key exchange still succeeds. In this
case, the variable has been overwritten after the point multiplication and addition, and
otherwise this did not happen. Since this depends on the 9-th secret key bit, this attack
can reveal all bits by attacking the respective round 9 of the three-point ladder.

Analysis and Optimization of
PQC Schemes

Analysis of physical attacks 61

Similarly, a C safe-error attack can be used to launch such an attack. In particular, SIKE
uses a constant-time point swap function, which swaps points if a secret key bit equals 1,
and leaves them unchanged if it is 0. Thus, faulting the execution of this swap function,
e.g., through an instruction skip, we can observe if the key exchange still succeeds. This
again reveals bits of the secret key, and with the same strategy as above, we can recover
the full secret key.

Safe-error attacks on CSIDH

Similar attacks can also be launched against CSIDH implementations. In particular, the
following approach considers the constant-time implementations from [28, 79].

One approach for an M safe-error attack is to reveal dummy isogenies through memory
faults. The implementations from [28, 79] use dummy isogenies to achieve the constant-
time property. This means that some isogenies are computed, but their results are discarded.
While a real isogeny updates the current curve coefficient �, a dummy isogeny simply keeps
the previous value. Thus, injecting a memory fault in � during the isogeny computation
will only cause computations to fail if a dummy isogeny is computed. Otherwise, � will be
overwritten by the new valid curve coefficient at the end of the call to the isogeny function.
Thus, analogous to the attacks on SIKE, we can detect dummy isogenies, and thus reveal
the secret key up to the signs of the key elements, resp. the full key for the implementation
of [72].

Similarly, [79] keeps two points throughout the computations. However, which of these
variables is overwritten after an isogeny computation depends on the secret information if
a dummy or real isogeny is computed. Thus, we can again launch an M safe-error attack,
and observe whether the key exchange still succeeds. As above, repeating this procedure
for each isogeny reveals the private key up to signs.

Practical experiments

All practical attacks were implemented using the ChipWhisperer tool chain (version 5.3.0)
in Python (version 3.8.2) and performed on a ChipWhisperer-Lite board with a 32-bit
STM32F303 ARM Cortex-M4 processor as target core. Based on available implementations,
we wrote slightly modified ARM implementations of SIKEp434 and CSIDH-512 to make
them suitable for our setup.
The attacks on SIKEp434 require 1,090 fault injections in order to reveal the private

key with an accuracy of 99%. In CSIDH-512, we require 888 fault injections to reveal
the secret key up to sign with an accuracy of 99%. The signs can be found by a simple
meet-in-the-middle attack.

Countermeasures

As usual, redundancy can prevent the safe-error attacks from this section. That is, we can
simply adapt the code to check if point swaps were executed correctly, and modify access
patterns in order to prevent M safe-error attacks.

62 Analysis and Optimization of
PQC Schemes
Analysis of physical attacks

6.2 Disorientation fault attacks in CSIDH

This section presents a new class of fault-injection attacks against the CSIDH family
of cryptographic group actions. Our disorientation attacks effectively flip the direction
of some isogeny steps [EPRINT:BKLMPRST22]. We achieve this by faulting a specific
subroutine, connected to the Legendre symbol or Elligator computations performed during
the evaluation of the group action. These subroutines are present in almost all known CSIDH
implementations. Post-processing a set of faulty samples allows us to infer constraints on
the secret key. The details are implementation specific, but we show that in many cases,
it is possible to recover the full secret key with only a modest number of successful fault
injections andmodest computational resources. We provide details for attacking the original
CSIDH proof-of-concept software as well as the CTIDH constant-time implementation.
Finally, we present a set of lightweight countermeasures against the attack and discuss
their security.

Isogeny walks

The CSIDH group action consists of an isogeny walk containing a series of isogeny steps
that we denote as l±1

7
. A secret key is a vector of integers (41, . . . , 4<) that determines how

often each l±1
7

is applied, and in which direction these steps are taken, i.e., if in positive
or negative direction. The action of an l±1

7
is computed by finding a point of order �7 of

the correct orientation, which uniquely determines the �7-isogeny induced by l±1
7
. The

orientation of a point is positive, if it has coordinates (F, G) with F, G ∈ F >, and negative, if
it has coordinates (F, G) with F ∈ F > and G ∈ F >2\F >. Usually, the high cost for sampling
points is amortized by combining several �7-isogenies of the same direction, i.e., for some
7 ∈ (such that the secret key elements 47 have the same sign.

Attack scenario and disorientation faults

We assume physical access to some hardware device containing an unknown CSIDH private
key a. In the basic version of the attack, we suppose that the device provides an interface
to pass in a CSIDH public-key curve � and receive back the result a ∗ � of applying a to
the public key � as in the second step of the key exchange. Note that alternative scenarios,
such as a hashed version of the attack are discussed in [EPRINT:BKLMPRST22].
We assume that the attacker is able to trigger an error during the computation of the

orientation of a point in a specific round of the CSIDH algorithm: Whenever a point %
with orientation A ∈ {−1, 1} is sampled during the algorithm, we can flip the orientation
A ↦→ −A by injecting a fault in the Legendre symbol computation that determines the field
of definition of the respective G-coordinate, and hence the orientation of the point. This
leads to some isogenies being computed in the opposite direction throughout the round.

Recovering secret keys

Suppose we flip the orientation of a point in one round of the isogeny computation
�� = a ∗ �� and the rest of the computation is performed correctly. The resulting curve �B

Analysis and Optimization of
PQC Schemes

Disorientation fault attacks in CSIDH 63

is called a faulty curve. If the round was computing steps for isogenies in (with direction
A, the resulting curve satisfies

�� =
∏
7∈(

l2A7 ∗ �B,

that is, the faulty curve differs from the correct curve by an isogeny whose degree is given
by the (squares of) primes �7 for 7 ∈ (, the set (in the round we faulted.
Due to the point rejection probabilities in CSIDH, which results in effects like missing

torsion and torsion noise, faulting the same round multiple times usually results in a set of
different output curves. These curves have small distance, and hence a meet-in-the-middle
search finds the connecting isogenies between them. Thus, each such set of curves of a
round @ results in a graph, which reveals information such as the orientation of primes �7.

Repeating this procedure for different rounds @ gives us a set of different graphs. Again,
a meet-in-the-middle search can connect these graphs, and connect them to the correct
output curve ��. This connected graph then gives us all the information to recover the
secret key, see [EPRINT:BKLMPRST22].

Figure 6.1 gives an example for such a graph. For simplicity of representation, this graph
stems from a toy implementation of CSIDH, using a 103-bit prime as parameter. The secret
key in this example is
(−1, +1, +2, +3,−2, +3, +2, +3, +1, +2,−3,−3, +2, +3,−2,−3,−2, +2, +1,−3, 0).

2
18

6
3

8
10

14

4

5

4

3

8

7
10

14

12

2

5 20

1

1
17

9

4

15

2

6

7

15

1

53

4

3
19

13 11

7

16

Figure 6.1: Example isogeny graph of faulty curves obtained from attacking the fictitious
CSIDH-103 implementation.

Simulation

This approach of faulting the orientation of points applies to almost all implementations of
CSIDH. As examples, [EPRINT:BKLMPRST22] simulates the fault for the CSIDH-512 [32]
and CTIDH-512 [16] implementations. The reported number of required samples for
recovering secret keys is roughly 128 for CSIDH-512 and 40 for CTIDH-512, respectively.

Countermeasures

While previous the literature presented a countermeasure that significantly complicates
disorientation faults, its cost is rather high with an overhead of roughly 30% [28]. To avoid

64 Analysis and Optimization of
PQC Schemes
Analysis of physical attacks

this, we propose to use pseudo G-coordinates. In particular, we compute the orientation of
a point in a way that ensures the correctness of its G-coordinate. A successful disorientation
is then expected to require two successive faults with a success probability of 1/>. For
details, we refer to [EPRINT:BKLMPRST22]. The computational overhead for this is not
noticeable in CSIDH-512, and roughly 5.5% in CTIDH-512.

6.3 Zero-value attacks and correlation attacks on CSIDH and
SIKE

This section presents zero-value and correlation attacks on CSIDH and SIKE. We expand
on previous zero-value attacks on SIKE [47] by analyzing the behavior of the zero curve �0
and six curve �6 in CSIDH and SIKE. We demonstrate an attack on static-key CSIDH and
SIKE implementations that recovers bits of the secret key by observing via zero-value-based
resp. exploiting correlation-collision-based side-channel analysis whether secret isogeny
walks pass over the zero or six curve. We apply this attack to fully recover secret keys of
SIKE and two state-of-the-art CSIDH-based implementations: CTIDH and SQALE. We show
the feasibility of exploiting side-channel information for the proposed attacks based on
simulations with various realistic noise levels. Additionally, we discuss countermeasures
to prevent zero-value and correlation-collision attacks against CSIDH and SIKE in our
attacker model.
We use the fact that both CSIDH and SIKE use elliptic curves in Montgomery form

�0 : G
2 = F3 + 0F2 + F with the Montgomery coefficient 0 ∈ F > in CSIDH resp. 0 ∈ F >2 in

SIKE. We exploit representations of the curves �0 and �6 that either contain zero values or
observable correlations. Both schemes essentially perform secret isogeny walks. That is,
they compute a sequence of secret isogenies that are determined by the secret key. The main
idea is that we construct public keys such that the target performs a path that potentially
passes such a curve. Whenever this happens, we can observe this via side-channel analysis
(SCA), and recover bits of the secret key.

Recovering CSIDH keys

To decrease computational cost by avoiding costly inversions, in CSIDH the curve �0 is
represented using projective coordinates for 0 ∈ F >. The following two are used in current
CSIDH-based implementations:

• the Montgomery form (� : �), such that 0 = �/�, with � non-zero,

• and the alternative Montgomery form (� + 2� : 4�), such that 0 = �/�, with �
non-zero.

This means that the zero curve �0, which is a valid supersingular curve in CSIDH, is
represented either as (0 : �) or (2� : 4�) with some random � ∈ F >.

The representation (0 : �) contains a zero value, which cannot be prevented by coordi-
nate randomization. Thus, whenever a secret isogeny walk passes over �0, we can detect
this zero value using standard SCA techniques, as, e.g., described in [47].

Analysis and Optimization of
PQC Schemes

Zero-value attacks and correlation attacks on CSIDH and SIKE 65

In the representation (2� : 4�) with � non-zero, if 2� < >/2, it is clear that 4� is a
simple bit shift of 2�. This can easily be observed via correlation-collision attacks.

A CSIDH isogeny walk consists of a series of isogeny steps that we denote as l±1
7
. If the

sequence of these isogenies is fixed, and the first 9 − 1 key bits are known, it is trivial to
construct public keys �PK resp. �̃PK such that paths pass through �0 after step 9 if the 9-th
step applies l7 resp. l−17 . Observing for which of these cases this occurs then leaks the 9-th
secret bit. Following this approach, we can recover CSIDH secret keys adaptively bit by bit.
The general approach is depicted in Figure 6.2.

�PK �0

�0′

�0

4 =
−1

4 = 1

7

3

SCA

SCA

Figure 6.2: Generic approach to discover secret bits using side-channel information.

In CSIDH implementations, individual isogeny steps l±1
7

can fail with a certain probability,
in which case paths do not pass �0. However, we can repeat measurements several times
for each bit to obtain a large probability for no failures to occur at least in one run.
When applied to the state-of-the-art constant-time implementations SQALE-2048 [34]

resp. CTIDH-511 [16], a simulation of the attack requires an average of 8,273 resp. 85,000
measurements, see [27].

Recovering SIKE keys

SIKE implementations use a similar representation of curve coefficients. In particular, it
uses Montgomery curves over F >2 of the following form:

• The alternative Montgomery form (� + 2� : 4�), such that 0 = �/� with � non-zero.
This representation is used for Alice’s computations as it is the most efficient for
computing 2-isogenies. It is often written as (�+24 : �24) with �+24 = � + 2� and
�24 = 4� so that 0 = 2(2�+24 − �24)/�24.

• The form (�+2� : �−2�), such that 0 = �/�, with � non-zero. This representation
is used for Bob’s computations as it is the most efficient for computing 3-isogenies.
It is often written as (�+24 : �−24) with �+24 = � + 2� and �−24 = � − 2� so that
0 = 2(�+24 + �−24)/(�+24 − �−24).

In both forms, the curve �6 is represented as (8� : 4�), which admits the same correlation
as for CSIDH. As both values are defined over F >2 , they consist of two F >-values each, which
simplifies their detection via SCA. Furthermore, SIKE uses primes of the form > = 24 ∗ 5 − 1

with 24 ≈ √
>, which means that modular reductions do not effect the correlation of half of

the bits of 4� resp. 8�.
Similar to the CSIDH attack, we assume knowledge of the first 9 − 1 secret key bits, and

construct public keys that lead the target over �6 after the 9-th step, and learn the 9-th
bit from this. Constructing such public keys is more involved than in CSIDH. However,

66 Analysis and Optimization of
PQC Schemes
Analysis of physical attacks

theory about dual isogenies allows for computing suitable public keys via backtracking, as
detailed in [27]. In contrast to CSIDH, isogeny steps cannot fail in SIKE, which substantially
simplifies the attack.

When applied to the SIKE Round 3 software, the number of required measurements in a
simulation of the attack for different parameter sets is detailed in Table 6.1.

Scheme SIKEp434 SIKEp503 SIKEp610 SIKEp751
Samples 228 265 320 398

Table 6.1: Required number of samples to reconstruct secret keys in simulations.

Countermeasures

Both attacks on CSIDH variants and SIKE are currently not mitigated by public key vali-
dation methods. In CSIDH, the attack provides valid supersingular curves as public keys,
which means that the key validation cannot detect the attack. In SIDH and SIKE, the public
keys are not honestly generated. However, full key validation is conjectured not to be
possible, and the public keys satisfy all properties that can currently be validated.

Potential countermeasures include masking by precomposing the secret isogeny with an
ephemeral isogeny of lower degree, and postcomposing by its dual. This steers isogeny
paths away from vulnerable curves, and an attacker needs to correctly guess the ephemeral
masking isogeny in order to learn key bits. On the other hand, it remains an open question
to find curve representations that do not admit such correlation or zero-value attacks.

Analysis and Optimization of
PQC Schemes

Zero-value attacks and correlation attacks on CSIDH and SIKE 67

Bibliography

[1] Carlos Aguilar Melchor et al. HQC. Tech. rep. available at https://csrc.
nist . gov / projects / post - quantum - cryptography / round - 3 -
submissions. National Institute of Standards and Technology, 2020 (cit. on p. 18).

[2] Carlos Aguilar Melchor et al. HQC. Tech. rep. available at https://csrc.
nist . gov / Projects / post - quantum - cryptography / round - 4 -
submissions. National Institute of Standards and Technology, 2022 (cit. on p. 7).

[3] Carlos Aguilar Melchor et al. RQC. Tech. rep. available at https : / / csrc .
nist . gov / projects / post - quantum - cryptography / round - 2 -
submissions. National Institute of Standards and Technology, 2019 (cit. on p. 21).

[4] Gorjan Alagic et al. NISTIR 8309: Status Report on the Second Round of the NIST
Post-Quantum Cryptography Standardization Process. https://nvlpubs.nist.
gov/nistpubs/ir/2020/NIST.IR.8309.pdf. 2020 (cit. on pp. 10, 16,
18–21, 26–29, 31, 32, 34–36, 39, 41, 42).

[5] Gorjan Alagic et al. NISTIR 8413: Status Report on the Third Round of the NIST
Post-Quantum Cryptography Standardization Process. https://nvlpubs.nist.
gov/nistpubs/ir/2022/NIST.IR.8413.pdf. 2022 (cit. on pp. 10, 18, 23,
26, 27, 29, 30, 33, 34, 36, 38, 39, 42, 44, 45).

[6] Martin R. Albrecht et al. Classic McEliece. Tech. rep. available at https : / /
csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions. National Institute of Standards and Technology, 2022 (cit. on
pp. 7, 17).

[7] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. “NewHope on ARM Cortex-M”.
In: Security, Privacy, and Applied Cryptography Engineering— SPACE 2016. Vol. 10076.
Lecture Notes in Computer Science. 2016, pp. 332–349. doi: 10.1007/978-3-
319-49445-6_19 (cit. on p. 60).

[8] Erdem Alkim et al. “ISA Extensions for Finite Field Arithmetic”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020.3 (2020). https://
tches.iacr.org/index.php/TCHES/article/view/8589, pp. 219–
242. issn: 2569-2925. doi: 10.13154/tches.v2020.i3.219-242 (cit. on
pp. 59, 60).

[9] Erdem Alkim et al. “Post-quantum Key Exchange - A New Hope”. In: USENIX Security
2016: 25th USENIX Security Symposium. Ed. by Thorsten Holz and Stefan Savage.
USENIX Association, Aug. 2016, pp. 327–343 (cit. on p. 32).

[10] Nicolas Aragon et al. BIKE. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 15).

Analysis and Optimization of
PQC Schemes
Bibliography 69

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-49445-6_19
https://doi.org/10.1007/978-3-319-49445-6_19
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://doi.org/10.13154/tches.v2020.i3.219-242
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[11] Nicolas Aragon et al. BIKE. Tech. rep. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions.
National Institute of Standards and Technology, 2022 (cit. on p. 7).

[12] Nicolas Aragon et al. ROLLO. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 20).

[13] Hayo Baan et al. “Round5: Compact and Fast Post-quantum Public-Key Encryption”.
In: Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019. Ed.
by Jintai Ding and Rainer Steinwandt. Springer, Heidelberg, 2019, pp. 83–102. doi:
10.1007/978-3-030-25510-7_5 (cit. on p. 35).

[14] Marco Baldi et al. LEDAcrypt. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 19).

[15] Marco Baldi et al. “LEDAcrypt: QC-LDPC Code-Based Cryptosystems with Bounded
Decryption Failure Rate”. In: Code-Based Cryptography - 7th International Workshop,
CBC 2019, Darmstadt, Germany, May 18-19, 2019, Revised Selected Papers. Ed. by
Marco Baldi, Edoardo Persichetti, and Paolo Santini. Vol. 11666. Lecture Notes in
Computer Science. Springer, Heidelberg, 2019, pp. 11–43 (cit. on p. 19).

[16] Gustavo Banegas et al. “CTIDH: faster constant-time CSIDH”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021.4 (2021). https://
tches.iacr.org/index.php/TCHES/article/view/9069, pp. 351–
387. issn: 2569-2925. doi: 10.46586/tches.v2021.i4.351-387 (cit. on
pp. 24, 64, 66).

[17] Daniel J. Bernstein et al. “NTRU Prime: Reducing Attack Surface at Low Cost”. In:
SAC 2017: 24th Annual International Workshop on Selected Areas in Cryptography.
Ed. by Carlisle Adams and Jan Camenisch. Vol. 10719. Lecture Notes in Computer
Science. Springer, Heidelberg, Aug. 2017, pp. 235–260. doi: 10.1007/978-3-
319-72565-9_12 (cit. on p. 34).

[18] Ward Beullens and Bart Preneel. “Field Lifting for Smaller UOV Public Keys”. In:
Progress in Cryptology - INDOCRYPT 2017: 18th International Conference in Cryptology
in India. Ed. by Arpita Patra and Nigel P. Smart. Vol. 10698. Lecture Notes in
Computer Science. Springer, Heidelberg, Dec. 2017, pp. 227–246 (cit. on p. 40).

[19] Ward Beullens et al. LUOV. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 40).

[20] Nina Bindel et al. qTESLA. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 28).

[21] Joppe W. Bos et al. “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM”.
In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, London,
United Kingdom, April 24-26, 2018. IEEE, 2018, pp. 353–367 (cit. on pp. 7, 29).

70 Analysis and Optimization of
PQC Schemes
Bibliography

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-25510-7_5
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[22] Joppe W. Bos et al. “Frodo: Take off the Ring! Practical, Quantum-Secure Key
Exchange from LWE”. In: ACM CCS 2016: 23rd Conference on Computer and Commu-
nications Security. Ed. by Edgar R. Weippl et al. ACM Press, Oct. 2016, pp. 1006–1018.
doi: 10.1145/2976749.2978425 (cit. on p. 30).

[23] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. “Memory-Efficient High-
Speed Implementation of Kyber on Cortex-M4”. In: AFRICACRYPT 19: 11th Interna-
tional Conference on Cryptology in Africa. Ed. by Johannes Buchmann, Abderrahmane
Nitaj, and Tajje eddine Rachidi. Vol. 11627. Lecture Notes in Computer Science.
Springer, Heidelberg, July 2019, pp. 209–228. doi: 10.1007/978-3-030-
23696-0_11 (cit. on p. 60).

[24] Giacomo Bruno et al. Cryptographic Smooth Neighbors. Cryptology ePrint Archive,
Paper 2022/1439. https://eprint.iacr.org/2022/1439. 2022 (cit. on
pp. 25, 49).

[25] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Practical
Forward Secure Signature Scheme Based on Minimal Security Assumptions”. In:
Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. Ed. by
Bo-Yin Yang. Springer, Heidelberg, 2011, pp. 117–129. doi: 10.1007/978-3-
642-25405-5_8 (cit. on p. 46).

[26] Fabio Campos, Juliane Krämer, and Marcel Müller. “Safe-Error Attacks on SIKE and
CSIDH”. In: Security, Privacy, and Applied Cryptography Engineering - 11th Interna-
tional Conference, SPACE 2021, Kolkata, India, December 10-13, 2021, Proceedings.
Ed. by Lejla Batina, Stjepan Picek, and Mainack Mondal. Vol. 13162. Lecture Notes
in Computer Science. Springer, Heidelberg, 2021, pp. 104–125 (cit. on p. 61).

[27] Fabio Campos et al. Patient Zero and Patient Six: Zero-Value and Correlation Attacks on
CSIDH and SIKE. Cryptology ePrint Archive, Report 2022/904. https://eprint.
iacr.org/2022/904. 2022 (cit. on pp. 66, 67).

[28] Fabio Campos et al. Trouble at the CSIDH: Protecting CSIDH with Dummy-Operations
against Fault Injection Attacks. Cryptology ePrint Archive, Report 2020/1005. https:
//eprint.iacr.org/2020/1005. 2020 (cit. on pp. 62, 64).

[29] Anne Canteaut and François-Xavier Standaert, eds. Advances in Cryptology – EU-
ROCRYPT 2021, Part I. Vol. 12696. Lecture Notes in Computer Science. Springer,
Heidelberg, Oct. 2021.

[30] A. Casanova et al. GeMSS. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 39).

[31] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH (prelim-
inary version). Cryptology ePrint Archive, Report 2022/975. https://eprint.
iacr.org/2022/975. 2022 (cit. on p. 23).

Analysis and Optimization of
PQC Schemes
Bibliography 71

https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-030-23696-0_11
https://eprint.iacr.org/2022/1439
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://eprint.iacr.org/2022/904
https://eprint.iacr.org/2022/904
https://eprint.iacr.org/2020/1005
https://eprint.iacr.org/2020/1005
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975

[32] Wouter Castryck et al. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: Advances in Cryptology – ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin
and Steven Galbraith. Vol. 11274. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2018, pp. 395–427. doi: 10.1007/978-3-030-03332-3_15
(cit. on pp. 24, 64).

[33] Melissa Chase et al. “Post-Quantum Zero-Knowledge and Signatures from Symmetric-
Key Primitives”. In: ACMCCS 2017: 24th Conference on Computer and Communications
Security. Ed. by Bhavani M. Thuraisingham et al. ACM Press, 2017, pp. 1825–1842.
doi: 10.1145/3133956.3133997 (cit. on p. 44).

[34] Jorge Chávez-Saab et al. The SQALE of CSIDH: Sublinear Vélu Quantum-resistant
isogeny Action with Low Exponents. Cryptology ePrint Archive, Report 2020/1520.
https://eprint.iacr.org/2020/1520. 2020 (cit. on p. 66).

[35] Cong Chen et al. NTRU. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 33).

[36] Ming-Shing Chen et al. “From 5-Pass MQ-Based Identification to MQ-Based Signa-
tures”. In: Advances in Cryptology – ASIACRYPT 2016, Part II. Ed. by Jung Hee Cheon
and Tsuyoshi Takagi. Vol. 10032. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2016, pp. 135–165. doi: 10.1007/978-3-662-53890-6_5
(cit. on p. 41).

[37] J. B. Conrey, M. A. Holmstrom, and T. L. McLaughlin. “Smooth neighbors”. In:
Experimental Mathematics 22.2 (2013), pp. 195–202 (cit. on p. 49).

[38] James W. Cooley and John W. Tukey. “An algorithm for the machine calculation of
complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–301
(cit. on p. 60).

[39] David Cooper et al. NIST SP 800-208: Recommendation for Stateful Hash-Based Signa-
ture Schemes.https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-208.pdf. 2020 (cit. on p. 46).

[40] Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Tor-
sion”. In: Advances in Cryptology – ASIACRYPT 2020, Part II. Ed. by Shiho Moriai
and Huaxiong Wang. Vol. 12492. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2020, pp. 440–463. doi: 10.1007/978-3-030-64834-3_15
(cit. on pp. 25, 49).

[41] Craig Costello, Michael Meyer, and Michael Naehrig. “Sieving for Twin Smooth Inte-
gers with Solutions to the Prouhet-Tarry-Escott Problem”. In: Advances in Cryptology
– EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12696. Lecture Notes in Computer Science. Springer, Heidelberg, Oct. 2021,
pp. 272–301. doi: 10.1007/978-3-030-77870-5_10 (cit. on p. 25).

[42] CRYSTALS-Dilithium. https://pq-crystals.org/dilithium/index.
shtml, (accessed 18.02.2022) (cit. on p. 26).

[43] CRYSTALS-Kyber. https://pq-crystals.org/kyber/index.shtml,
(accessed 18.02.2022) (cit. on p. 29).

72 Analysis and Optimization of
PQC Schemes
Bibliography

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1145/3133956.3133997
https://eprint.iacr.org/2020/1520
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-662-53890-6_5
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-77870-5_10
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/dilithium/index.shtml
https://pq-crystals.org/kyber/index.shtml

[44] Jan-Pieter D’Anvers et al. SABER. Tech. rep. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 36).

[45] Jan-Pieter D’Anvers et al. “Saber: Module-LWR Based Key Exchange, CPA-Secure En-
cryption and CCA-Secure KEM”. In: AFRICACRYPT 18: 10th International Conference
on Cryptology in Africa. Ed. by Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine
Rachidi. Vol. 10831. Lecture Notes in Computer Science. Springer, Heidelberg, May
2018, pp. 282–305. doi: 10.1007/978-3-319-89339-6_16 (cit. on p. 36).

[46] Luca De Feo, Antonin Leroux, and Benjamin Wesolowski. New algorithms for the
Deuring correspondence: SQISign twice as fast. Cryptology ePrint Archive, Report
2022/234. https://eprint.iacr.org/2022/234. 2022 (cit. on pp. 25, 49).

[47] Luca De Feo et al. SIKE Channels. Cryptology ePrint Archive, Report 2022/054.
https://eprint.iacr.org/2022/054. 2022 (cit. on p. 65).

[48] Luca De Feo et al. “SQISign: Compact Post-quantum Signatures from Quaternions
and Isogenies”. In: Advances in Cryptology – ASIACRYPT 2020, Part I. Ed. by Shiho
Moriai and HuaxiongWang. Vol. 12491. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2020, pp. 64–93. doi: 10.1007/978-3-030-64837-4_3
(cit. on p. 25).

[49] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivariable Polynomial Signa-
ture Scheme”. In: ACNS 05: 3rd International Conference on Applied Cryptography
and Network Security. Ed. by John Ioannidis, Angelos Keromytis, and Moti Yung.
Vol. 3531. Lecture Notes in Computer Science. Springer, Heidelberg, June 2005,
pp. 164–175. doi: 10.1007/11496137_12 (cit. on p. 42).

[50] Jintai Ding and Rainer Steinwandt, eds. Post-Quantum Cryptography - 10th Interna-
tional Conference, PQCrypto 2019. Springer, Heidelberg, 2019.

[51] Jintai Ding et al. Rainbow. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 42).

[52] Jintai Ding et al. “The Nested Subset Differential Attack - A Practical Direct Attack
Against LUOV Which Forges a Signature Within 210 Minutes”. In: Advances in
Cryptology – EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier
Standaert. Vol. 12696. Lecture Notes in Computer Science. Springer, Heidelberg,
Oct. 2021, pp. 329–347. doi: 10.1007/978-3-030-77870-5_12 (cit. on
p. 40).

[53] Léo Ducas et al. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme”.
In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2018.1
(2018). https://tches.iacr.org/index.php/TCHES/article/
view/839, pp. 238–268. issn: 2569-2925. doi: 10.13154/tches.v2018.i1.
238-268 (cit. on pp. 7, 26).

[54] Oscar Garcia-Morchon et al. Round5. Tech. rep. available at https://csrc.
nist . gov / projects / post - quantum - cryptography / round - 2 -
submissions. National Institute of Standards and Technology, 2019 (cit. on p. 35).

Analysis and Optimization of
PQC Schemes
Bibliography 73

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-89339-6_16
https://eprint.iacr.org/2022/234
https://eprint.iacr.org/2022/054
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/11496137_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-77870-5_12
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[55] W. Morven Gentleman and Gordon Sande. “Fast Fourier Transforms: for fun and
profit”. In: Proceedings of the November 7-10, 1966, fall joint computer conference.
ACM. 1966, pp. 563–578 (cit. on p. 60).

[56] Ruben Gonzalez et al. “Verifying Post-Quantum Signatures in 8 kB of RAM”. In:
Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021. Ed. by
Jung Hee Cheon and Jean-Pierre Tillich. Springer, Heidelberg, 2021, pp. 215–233.
doi: 10.1007/978-3-030-81293-5_12 (cit. on pp. 56, 58).

[57] Mike Hamburg. Three Bears. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 37).

[58] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-Based Pub-
lic Key Cryptosystem”. In: Third Algorithmic Number Theory Symposium (ANTS).
Vol. 1423. Lecture Notes in Computer Science. Springer, Heidelberg, June 1998,
pp. 267–288 (cit. on p. 33).

[59] Andreas Hulsing et al. SPHINCS+. Tech. rep. available at https : / / csrc .
nist . gov / projects / post - quantum - cryptography / round - 3 -
submissions. National Institute of Standards and Technology, 2020 (cit. on pp. 7,
45).

[60] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems from Super-
singular Elliptic Curve Isogenies”. In: Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011. Ed. by Bo-Yin Yang. Springer, Heidelberg, 2011, pp. 19–34.
doi: 10.1007/978-3-642-25405-5_2 (cit. on pp. 23, 25).

[61] David Jao et al. SIKE. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 23).

[62] David Jao et al. SIKE. Tech. rep. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions.
National Institute of Standards and Technology, 2022 (cit. on p. 7).

[63] Daniel Kales and Greg Zaverucha. Improving the Performance of the Picnic Signature
Scheme. Cryptology ePrint Archive, Report 2020/427. https://eprint.iacr.
org/2020/427. 2020 (cit. on p. 44).

[64] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation 48.177
(1987), pp. 203–209 (cit. on p. 7).

[65] “Kryptographische Verfahren: Empfehlungen und Schlüssellangen”. In: Technische
Richtlinie TR-02102-1, Bundesamt fur Sicherheit in der Informationstechnik (2020)
(cit. on pp. 17, 30).

[66] Greg Kuperberg. “A Subexponential-Time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem”. In: 35.1 (2005), pp. 170–188 (cit. on p. 24).

[67] Charles Eric Leiserson et al. Introduction to algorithms. Vol. 6. MIT press Cambridge,
MA, 2001 (cit. on p. 59).

74 Analysis and Optimization of
PQC Schemes
Bibliography

https://doi.org/10.1007/978-3-030-81293-5_12
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://eprint.iacr.org/2020/427
https://eprint.iacr.org/2020/427

[68] Xianhui Lu et al. LAC. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.
National Institute of Standards and Technology, 2019 (cit. on p. 31).

[69] Xianhui Lu et al. LAC: Practical Ring-LWE Based Public-Key Encryption with Byte-Level
Modulus. Cryptology ePrint Archive, Report 2018/1009. https://eprint.iacr.
org/2018/1009. 2018 (cit. on p. 31).

[70] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary starting
curve. Cryptology ePrint Archive, Report 2022/1026. https://eprint.iacr.
org/2022/1026. 2022 (cit. on p. 23).

[71] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report 42-44. https://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF. Jet Propulsion Laboratory, California
Institute of Technology, 1978, pp. 114–116 (cit. on p. 17).

[72] Michael Meyer, Fabio Campos, and Steffen Reith. “On Lions and Elligators: An
Efficient Constant-Time Implementation of CSIDH”. In: Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer Stein-
wandt. Springer, Heidelberg, 2019, pp. 307–325. doi: 10.1007/978-3-030-
25510-7_17 (cit. on p. 62).

[73] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in Cryptology
– CRYPTO’85. Ed. by Hugh C. Williams. Vol. 218. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 1986, pp. 417–426. doi: 10.1007/3-540-39799-
X_31 (cit. on p. 7).

[74] Michael Naehrig et al. FrodoKEM. Tech. rep. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 30).

[75] National Institute of Standards and Technology (NIST). Post-Quantum Cryptography
Standardization. https://csrc.nist.gov/Projects/post-quantum-
cryptography / Post - Quantum - Cryptography - Standardization.
2016 (cit. on p. 7).

[76] Ruben Niederhagen, Johannes Roth, and Julian Wälde. Streaming SPHINCS+ for
Embedded Devices using the Example of TPMs. Cryptology ePrint Archive, Report
2021/1072. https://eprint.iacr.org/2021/1072. 2021 (cit. on p. 58).

[77] NIST PQC forum. https://groups.google.com/a/list.nist.gov/g/
pqc-forum (cit. on pp. 10, 36).

[78] David Noack et al. QuantumRISC WP1 Report: Use Cases and Requirements. 2020. url:
https://quantumrisc.org/results/quantumrisc-wp1-report.
pdf (cit. on pp. 8, 12–16, 48).

[79] Hiroshi Onuki et al. “(Short Paper) A Faster Constant-Time Algorithm of CSIDH
Keeping Two Points”. In: IWSEC 19: 14th International Workshop on Security, Ad-
vances in Information and Computer Security. Ed. by Nuttapong Attrapadung and
Takeshi Yagi. Vol. 11689. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2019, pp. 23–33. doi: 10.1007/978-3-030-26834-3_2 (cit. on p. 62).

Analysis and Optimization of
PQC Schemes
Bibliography 75

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://eprint.iacr.org/2021/1072
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://doi.org/10.1007/978-3-030-26834-3_2

[80] Thomas Poppelmann et al. NewHope. Tech. rep. available at https://csrc.
nist . gov / projects / post - quantum - cryptography / round - 2 -
submissions. National Institute of Standards and Technology, 2019 (cit. on p. 32).

[81] Thomas Prest et al. FALCON. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on pp. 7, 27).

[82] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems”. In: Communications of the
Association for Computing Machinery 21.2 (1978), pp. 120–126 (cit. on p. 7).

[83] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038. https://eprint.iacr.org/2022/1038. 2022 (cit. on p. 23).

[84] Johannes Roth, Evangelos G. Karatsiolis, and Juliane Krämer. “Classic McEliece
Implementation with LowMemory Footprint”. In: Smart Card Research and Advanced
Applications - 19th International Conference, CARDIS 2020, Virtual Event, November
18-19, 2020, Revised Selected Papers. Ed. by Pierre-Yvan Liardet and Nele Mentens.
Vol. 12609. Lecture Notes in Computer Science. Springer, Heidelberg, 2020, pp. 34–
49 (cit. on pp. 53, 58).

[85] Sujoy Sinha Roy et al. “Compact Ring-LWE Cryptoprocessor”. In: Cryptographic
Hardware and Embedded Systems – CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. Lecture Notes in Computer Science. Springer, Heidelberg, Sept.
2014, pp. 371–391. doi: 10.1007/978-3-662-44709-3_21 (cit. on p. 60).

[86] Simona Samardjiska et al. MQDSS. Tech. rep. available at https : / / csrc .
nist . gov / projects / post - quantum - cryptography / round - 2 -
submissions. National Institute of Standards and Technology, 2019 (cit. on p. 41).

[87] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM J. Comput. 26.5 (1997), pp. 1484–
1509 (cit. on p. 7).

[88] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. “Efficient Key Recovery for All
HFE Signature Variants”. In: Advances in Cryptology – CRYPTO 2021, Part I. Ed. by
Tal Malkin and Chris Peikert. Vol. 12825. Lecture Notes in Computer Science. Virtual
Event: Springer, Heidelberg, Aug. 2021, pp. 70–93. doi: 10.1007/978-3-030-
84242-0_4 (cit. on p. 39).

[89] Bo-Yin Yang, ed. Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011. Springer, Heidelberg, 2011.

[90] Greg Zaverucha et al. Picnic. Tech. rep. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020 (cit. on p. 44).

76 Analysis and Optimization of
PQC Schemes
Bibliography

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/1038
https://doi.org/10.1007/978-3-662-44709-3_21
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-84242-0_4
https://doi.org/10.1007/978-3-030-84242-0_4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Executive summary
	Introduction
	Post-quantum cryptography
	Document goals and structure

	Analysis of PQC schemes
	Overall criteria
	Use case criteria
	Code-based schemes
	KEM
	Suitability for QuantumRISC

	Isogeny-based schemes
	KEM
	KEX
	Suitability for QuantumRISC

	Lattice-based schemes
	Signature
	KEM
	Suitability for QuantumRISC

	Multivariate schemes
	Signature
	Suitability for QuantumRISC

	Symmetric-/Hash-based schemes
	Signature
	Suitability for QuantumRISC

	Performance optimizations
	Parameters for SQISign

	Optimization of memory requirements and message sizes
	Memory-constrained Classic McEliece
	Memory-constrained verification of PQC signatures
	Memory-constrained SPHINCS+ signing and verifying
	On-the-fly computation of twiddle factors for NTT

	Analysis of physical attacks
	Safe-error attacks on SIKE and CSIDH
	Disorientation fault attacks in CSIDH
	Zero-value attacks and correlation attacks on CSIDH and SIKE

	Bibliography

